Math, asked by lsara7756, 2 months ago

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and co efficient 3x square -4x-7

Answers

Answered by Sauron
22

Step-by-step explanation:

Given:

Polynomial = 3x² - 4x - 7

To find:

Verifying the relationship between zeros of polynomial and it's co-officients.

Solution:

Find zeros of 3x² - 4x - 7

\sf{\longrightarrow{{3x}^{2} - 4x -7}}

\sf{\longrightarrow{ {3x}^{2} + 3x - 7x - 7}}

\sf{\longrightarrow{3x(x - 1) - 7(x - 1)}}

\sf{\longrightarrow{(3x - 7)(x + 1) = 0}}

The zeros :

  • (3x - 7)

\sf{\longrightarrow} \: 3x - 7 = 0

\sf{\longrightarrow} \: 3x  = 7

\sf{\longrightarrow} \: x =  \dfrac{7}{3}

  • (x + 1)

\sf{\longrightarrow} \: x + 1 = 0

\sf{\longrightarrow} \: x =  - 1

The zeros are \sf{\dfrac{7}{3}} and (-1).

_____________________

Verifying the relationship:

Sum of zeros -

\sf{\longrightarrow{ \dfrac{7}{3} + ( - 1) }}

\sf{\longrightarrow{ \dfrac{7 - 3}{3}}}

\sf{\longrightarrow{ \dfrac{4}{3} }}

Product of zeros:

\sf{\longrightarrow{ \dfrac{7}{3}  \times ( - 1) }}

\sf{\longrightarrow{ \dfrac{ -7 }{3}}}

For polynomial 3x² - 4x - 7, if zeros are α and β.

In the polynomial -

  • a = 3
  • b = -4
  • c = -7

Sum of zeros :

\sf{\longrightarrow} \: \alpha + \beta = \dfrac{ - b}{a}

\sf{\longrightarrow} \: \alpha + \beta = \dfrac{ - ( - 4)}{3}

\sf{\longrightarrow} \: \alpha + \beta =\dfrac{4}{3}

Sum of the zeros is \sf{\dfrac{ - ( - 4)}{3}}

_____________________

Product of zeros :

\sf{\longrightarrow} \: \alpha \times \beta = \dfrac{c}{a}

\sf{\longrightarrow} \: \alpha \times \beta = \dfrac{-7}{3}

Product of zeros = \sf{\dfrac{-7}{3}}

Hence verified!

Answered by Mister360
21

Step-by-step explanation:

To find:-

Zeros of the polynomial \sf 3x^2-4x-7

Solution:-

\\ \qquad\quad\rm{:}\dashrightarrow 3 {x}^{2}  - 4x - 7 = 0 \\ \\ \qquad\quad\rm{:}\dashrightarrow 3 {x}^{2}   + 3x - 7x - 7 = 0 \\ \\ \qquad\quad\rm{:}\dashrightarrow 3x(x + 1) - 7(x + 1) = 0 \\ \\ \qquad\quad\rm{:}\dashrightarrow (x + 1) (3x - 7) = 0 \\ \\ \qquad\quad\rm{:}\dashrightarrow (x + 1) = 0 \: or \: (3x - 7) = 0 \\ \\ \qquad\quad\rm{:}\dashrightarrow x =  - 1 \: or \: x =  \dfrac{7}{3}

{\mathcal{\therefore Zeros\;of\:the\; polynomial\:3x^2-4x-7\:are\:-1\:and\:\dfrac{7}{3}}}

Similar questions