Math, asked by vanigayatri2007, 1 month ago

find the zeroes of the following quadratic polynomials and verify the relation between zeroes and coefficients. a ) 4x²+12x+9​

Answers

Answered by Anonymous
4

Answer

  • Zeros of the quadratic polynomial are  \sf \cfrac{-3}{2} \: and \: \cfrac{-3}{2}

Given

  • A quadratic polynomial 4x² + 12x + 9.

To Do

  • To find the zeros of the quadratic polynomial and to verify the relation between zeros and coefficients.

Step By Step Explanation

Zeros :

Let's find the zeros of the quadratic polynomial 4x² + 12x + 9.

So let's do it !!

 \longmapsto \sf4 {x}^{2}  + 12x + 9 \\  \\     \bigstar \:  \: \underline{\boxed{ \red {\bold{{(x + y)}^{2}  =  {x}^{2} +  {y}^{2}  + 2xy}}}} \\  \\ \longmapsto \sf  {(2x)}^{2}  + 2 \times 2x \times 3 +  {(3)}^{2}  \\  \\  \longmapsto\sf{(2x + 3)}^{2}  \\  \\ \longmapsto\sf (2x + 3)(2x + 3) \\  \\ \bold{Zeros \: of \: the \: polynomial \: are\downarrow} \\  \\  \longmapsto  \sf \purple{2x + 3 = 0 \implies \bold{ x =  \cfrac{ - 3}{2}}} \\  \\  \longmapsto \sf \pink{2x + 3 = 0 \implies  \bold{x =  \cfrac{ - 3}{2}}}

Verification :

On comparing with ax² + bx + c.

a = 4 , b = 12 and c = 9.

So let's verify :

 \bigstar \:  \:   \:  \:  \underline{\boxed{ \bold{ \alpha  +  \beta  =  \cfrac{ - b}{a}}}}

By substituting the values :

  \longmapsto \sf\cfrac{ - 3}{2}  +  \cfrac{ - 3}{2}  =  \cfrac{ - 12}{4}  \\  \\   \longmapsto \sf \cfrac{ - 3 - 3}{2}  =  \cfrac{ - 12}{4}  \\  \\   \longmapsto \sf \cfrac{ -  \cancel6}{ \cancel2}  =  \cfrac{ -  \cancel{12}}{ \cancel4}  \\  \\  \longmapsto \underline  {\boxed{\bf{  - 3 =  - 3}}} \:  \:  \:  \:  \dag

_____________

 \bigstar \:  \:  \:  \:  \underline{ \boxed{ \bold{ \alpha  \beta  =  \cfrac{c}{a}}}}

By substituting the values :

  \longmapsto \sf\cfrac{ - 3}{2}  \times  \cfrac{ - 3}{2}  =  \cfrac{9}{4}  \\  \\   \longmapsto  \underline{\boxed{ \bf{\cfrac{9}{4}  =  \cfrac{9}{4}}}}  \:  \:  \:  \:  \dag

Hence, Verified.

_____________________

Similar questions