Math, asked by smit1571, 23 hours ago

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial: x²+2√5x - 15​

Answers

Answered by suhail2070
0

Step-by-step explanation:

 {x}^{2}  + 2 \sqrt{5}x  - 15 = 0 \\  \\  {x}^{2}  + 3 \sqrt{5} x -  \sqrt{5} x - 15 = 0 \\  \\ x(x + 3 \sqrt{5} ) -  \sqrt{5} (x + 3 \sqrt{5} )  = 0 \\  \\ (x -  \sqrt{5} )(x + 3 \sqrt{5} ) = 0 \\  \\ \alpha  =  \sqrt{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \beta  =  - 3 \sqrt{5} . \\  \\  \alpha +   \beta  =  - 2 \sqrt{5}  \\  \\  \alpha  \beta  =  - 15 \\  \\ also \:  \:  \:  \:  \alpha +   \beta  =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }  =  \frac{ - 2 \sqrt{5} }{1}  \\  \\  \alpha  \beta  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }  =  \frac{ - 15}{1} .

Similar questions