Math, asked by mrhelper72, 9 months ago

find the zeroes of the following x^2(√3+1)x+√3

pls give answer i will mark as brainliest ​

Answers

Answered by aryanchaudhary196
0

Answer:

Underroot 3 and 1

Step-by-step explanation:

Hi...☺

Here is your answer...✌

Given quadratic equation :

x² - (√3 + 1)x + √3 = 0

⇒ a = 1 , b = -(√3 + 1) , c = √3

Discriminant , D = b² - 4ac

D = (√3 + 1)² - 4×1×√3

D = (√3)² + 1² + 2√3 - 4√3

D = (√3)² + 1² - 2√3

D = (√3 - 1)²

Now using quadratic formula,

we get,

x = ( -b ± √D ) / 2a

x = [ √3 + 1 ± ( √3 - 1 ) ] / 2×1

x = (√3+1+√3-1)/2 or x = (√3+1-√3+1)/2

⇒ x = 2√3 / 2 or x = 2/2

⇒ x = √3 or x = 1

Answered by rock2604
0

Answer:

x^{2}+(\sqrt{3}+1)x+\sqrt{3}  =0                                   sum=\sqrt{3}+1

= x^{2}+\sqrt{3}x+x+\sqrt{3} = 0                                   product=\sqrt{3}

=x(x+\sqrt{3})+ 1(x+\sqrt{3})=0                                  \sqrt{3},1

=(x+1)(x+\sqrt{3}) =0

ie, x+1=0 , x+\sqrt{3}=0

therefore, x= -1  ,     x= - \sqrt{3}

therefore the zeroes of the polynomial are -1 and -\sqrt{3}                                                      

Step-by-step explanation:

hope it helps................

Similar questions