Math, asked by bs5894438, 1 month ago

find the zeroes of the of the equation 4x square+ 24x+36 and verify the relationship between the zeroes and cofficient.​

Answers

Answered by Anonymous
123

Answer:

Given :-

  • 4x² + 24x + 36

To Find :-

  • What is the zeroes of a quadratic polynomial and verify the relationship between the zeroes and co-efficient.

Solution :-

Given Equation :

\bigstar\: \: \bf{4x^2 + 24x + 36}

Let,

\implies \sf p(x) =\: 4x^2 + 24x + 36

Zero of the polynomial is the value of x, where p(x) = 0

By putting p(x) = 0 we get,

\implies \sf 4x^2 + 24x + 36 =\: 0

\implies \sf 4x^2 + (12 + 12)x + 36 =\: 0

\implies \sf 4x^2 + 12x + 12x + 36 =\: 0\: \: \bigg\lgroup \small\sf\bold{\pink{By\: splitting\: middle\: term}}\bigg\rgroup\\

\implies \sf 4x(x + 3) + 12(x + 3) =\: 0

\implies \sf (x + 3)(4x + 12) =\: 0

\longrightarrow \bf x + 3 =\: 0

\longrightarrow \sf\bold{\red{x =\: - 3}}

\longrightarrow \bf 4x + 12 =\: 0

\longrightarrow \sf 4x =\: - 12

\longrightarrow \sf x =\: \dfrac{- \cancel{12}}{\cancel{4}}

\longrightarrow \sf\bold{\red{x =\: - 3}}

{\footnotesize{\bold{\underline{\therefore\: The\: zeroes\: of\: quadratic\: polynomial\: are\: - 3\: and\: - 3\: respectively\: .}}}}

Hence,

  • α = - 3
  • β = - 3

Now, we have to verify the relationship between the zeroes and co-efficient :

Given Equation :

\bigstar\: \: \bf 4x^2 + 24x + 36

By comparing with ax² + bx + c we get,

  • a = 4
  • b = 24
  • c = 36

Sum Of Zeroes :

As we know that :

\clubsuit Sum Of Zeroes Formula :

\mapsto \sf\boxed{\bold{\pink{Sum\: Of\: Zeroes\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}

We have :

  • α = - 3
  • β = - 3
  • a = 4
  • b = 24

According to the question by using the formula we get,

\leadsto \sf (- 3) + (- 3) =\: \dfrac{- \cancel{24}}{\cancel{4}}

\leadsto \sf - 3 - 3 =\: \dfrac{- 6}{1}

\leadsto \sf\bold{\purple{- 6 =\: - 6}}

Hence, Verified.

Product Of Zeroes :

As we know that :

\clubsuit Product Of Zeroes Formula :

\mapsto \sf\boxed{\bold{\pink{Product\: Of\: Zeroes\: (\alpha\beta) =\: \dfrac{c}{a}}}}

We have :

  • α = - 3
  • β = - 3
  • a = 4
  • c = 36

According to the question by using the formula we get,

\leadsto \sf (- 3) \times (- 3) =\: \dfrac{\cancel{36}}{\cancel{4}}

\leadsto \sf\bold{\purple{9 =\: 9}}

Hence, Verified.

Answered by Anonymous
239

\underline {\underline{\bold{\red{   \star \: \: GIVEN :- }}}}\\ \\

 \footnotesize \bold { \mapsto \: 4x ^{2} + 24x + 36}\\ \\

\underline {\underline{\bold{\pink{ \star\:TO\: FIND :- }}}}\\ \\

 \footnotesize\bold{ \mapsto  \: What  \: is \:  the  \: zeroes  \: of  \: a \:  quadratic \:  polynomial  \: } \\ \footnotesize\bold{  \:  \:     \: \:  \:  \:  \:  and  \: verify \:  the  \: relationship  \: between  \:the }  \\  \footnotesize\bold{ \:  \:  \:  \:  \:  \:  \:  zeroes  \: and \:  co-efficient. \: }\\ \\</p><p>

\underline {\underline{\bold{\orange{ \star \:   \: SOLUTION :- }}}}\\ \\

 \footnotesize \bold \blue{P(x) = 4x ^{2}  + 24x +36} \\ \\</p><p></p><p> \footnotesize \bold{Here, a = 4, b = 24, c = 36} \\ \\</p><p></p><p> \footnotesize \bold{p(x)  = 4x ^{2}  + 12x + 12x + 36} \\ \\</p><p></p><p> \footnotesize \bold{\Rightarrow \: 4x(x + 3) + 12(x + 3)} \\ \\</p><p></p><p> \footnotesize \bold{\Rightarrow \: (x+3)(4x+12)} \\ \\</p><p></p><p> \footnotesize \bold\red{\Rightarrow \:  4(x + 3)^{2} } \\  \\ \\

 \footnotesize \bold{So, \:  the  \: zeros  \: of \:  quadratic  \: polynomial  \: is}  \\ \footnotesize \bold{-3 \:  and \:  -3.} \\ \\</p><p> \: \footnotesize \bold{ Let   \: \alpha   \: = -3  \: and \:   \beta  =  - 3} \\ \\</p><p></p><p>\footnotesize \bold{Sum  \: of  \: zeros =  \alpha  \:  +  \:  \beta  = - 3 - 3 =  - 6  }  \\ \\\footnotesize \bold{ Sum of zeros =  \frac{coefficient \:  of  \: x}{ coefficient  \: of  \:  {x}^{2} }} \\ \\ \footnotesize \bold{ -  \frac{b}{a}  =  \frac{ - 24}{4}  =  - 6} \\ \\\footnotesize \bold \red{So, sum  \: of  \: zeros = a + B = \frac{coefficient  \: of  \: x}{ coefficient  \: of   \: {x}^{2} } \: \: }\\ \\ \\

 \footnotesize \bold{Product \:  of  \: zeros=  \alpha  \beta = (-3)(-3) = 9} \\ \\\footnotesize \bold{Also, product  \: of \:  zeros = \frac{constant  \: term}{coefficient of  {x}^{2} } }\\ \footnotesize \bold{ =  \frac{c}{a}  =  \frac{36}{4}  = 9}\\ \\\footnotesize \bold \red{so \: product \: of \: zeros =  \alpha  \beta  = \frac{constant  \: term}{coefficient of  {x}^{2} } }\\ \\

Similar questions