Math, asked by busystudy, 4 months ago

Find the zeroes of the polynom.
4 x² +5root 2 x -3 and verify the relations
between zeroes and co-efficient of the
polynomials.


my confusion is in relationship of zeroes and coefficients. so plz write clearly .


any wrong and in-appropriate ans will be reported​

Answers

Answered by SuitableBoy
105

{\huge{\underline{\underline{\rm{Question}}}}}

★ Find the roots of the Polynomial :

 \rm \: 4 {x}^{2}  + 5 \sqrt{2} \:  x - 3  = 0

And verify the relationship between zeroes and coefficient of the Polynomial .

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

First , we will find the zeroes of the Polynomial .

 \rm \: 4 {x}^{2}  + 5 \sqrt{2}   \: x - 3 = 0

Standard equation (2°) is in the form of -

 \rm \: a {x}^{2}  + bx + c = 0

So ,

In the Polynomial ,

  • a = 4
  • b = 5\sqrt{2}
  • c = -3

Now using the Formula method , finding the zeroes

 \rm \mapsto \: roots \:  =  \dfrac{ - b \pm \:  \sqrt{ {b}^{2}  - 4ac}  }{2a}

 \mapsto \rm \: roots  =  \dfrac{ - 5 \sqrt{2} \pm \sqrt{ {(5 \sqrt{2}) }^{2} - 4 \times 4 \times ( - 3) }  }{2 \times 4}

 \rm \mapsto \: roots \:  =  \dfrac{ - 5 \sqrt{2}  \pm  \sqrt{50 + 48} }{8}

  \rm \mapsto \: roots \:  =  \dfrac{ - 5 \sqrt{2} \pm \sqrt{98} }{8}

 \rm \mapsto \:roots  =  \dfrac{ - 5 \sqrt{2} \pm \sqrt{49 \times 2}  }{8}

 \rm \mapsto \: roots =  \dfrac{ - 5 \sqrt{2} \pm7 \sqrt{2}  }{8}

\mapsto \rm \: first \: zero \:  =  \dfrac{ - 5 \sqrt{2} + 7 \sqrt{2}  }{8}

 \mapsto  \boxed{\rm first \: zero \:  =  \frac{ \cancel2 \sqrt{2} }{ \cancel8}  =  \dfrac{ \sqrt{2} }{4} =  \frac{1}{2 \sqrt{2} }  }....(i)

 \rm \mapsto \: second \: zero  =  \dfrac{ - 5 \sqrt{2} - 7 \sqrt{2}  }{8}

\mapsto  \boxed{ \rm \: second \: zero  = \dfrac{ -  \cancel{12} \sqrt{2} }{  \cancel8}  =  \frac{ - 3 \sqrt{2} }{2}  =  \frac{ - 3}{ \sqrt{2} } }

_________________________

Now , relationship ..

as we know ,

• Sum of zeroes = \rm\dfrac{-b}{a}

Here ,

 \rm \:first \: zero + second \: zero \:  =  \dfrac{ - 5 \sqrt{2} }{4}

LHS ,

 \rm \: 1st \: zero + 2nd \: zero \:  =  \frac{1}{2 \sqrt{2} }  +  \frac{ - 3}{ \sqrt{2} }  \\  \\  \implies \:  \frac{1  - 3 \times 2}{2 \sqrt{2} }  =  \frac{1 - 6}{2 \sqrt{2} }  =   \boxed{\frac{ - 5}{2 \sqrt{2} } }

RHS ,

  \dfrac{ - 5 \sqrt{2} }{4}  =  \dfrac{ - 5  \cancel{\sqrt{2} }}{2 \sqrt{2} \times   \cancel{\sqrt{2} } } =  \boxed{ \dfrac{ - 5}{2 \sqrt{2} } }

Since ,

LHS = RHS ,

The relation between zeroes of the Polynomial and coefficient is established .

Answered by kikii121103
13

Step-by-step explanation:

the above answer is absolutely correct

Similar questions