Math, asked by psinghS3, 3 months ago

Find the zeroes of the polynomial 21x2 – 11x –2 = 0

Answers

Answered by Anonymous
19

Answer :-

Given :-

  • Polynomial :- 21x² - 11x - 2 = 0

To Find :-

  • Zeros / roots

Solution :-

Method 1 :-

Using the middle term splitting method :-

\implies\sf 21x^2 - 11x - 2 = 0

\implies\sf 21x^2 - 14x + 3x - 2 = 0

\implies\sf 7x ( 3x - 2 ) + 1 ( 3x - 2 ) = 0

\implies\sf ( 7x + 1 ) ( 3x - 2 ) = 0

Either ( 7x + 1 ) = 0 or ( 3x - 2 ) = 0

\implies\sf 7x + 1 = 0

\implies\sf 7x = -1

\implies\sf x = \dfrac{1}{7}

\implies\sf 3x - 2 = 0

\implies\sf 3x = 2

\implies\sf x = \dfrac{2}{3}

Zeros of the polynomial = ⅔ , - ⅐

Method 2 :-

Using quadratic formula :-

\implies\sf Zeros = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

  • a = 21
  • b = -11
  • c = -2

\implies\sf \dfrac{-(-11) \pm \sqrt{11^2 - 4 \times 21 \times (-2)}}{2\times 21}

\implies\sf \dfrac{11 \pm \sqrt{121 + 168}}{2\times 21}

\implies\sf \dfrac{11 \pm \sqrt{289}}{42}

\implies\sf \dfrac{11 \pm 17}{42}

\implies\sf \dfrac{11+17}{42} , \dfrac{11-17}{42}

\implies\sf \dfrac{28}{42} , \dfrac{-6}{42}

\implies\sf \dfrac{2}{3} , \dfrac{-1}{7}

Zeros of the polynomial = ⅔ , - ⅐

Answered by PariketGoel
0

Hello Mate

Here's your answer

Hope you find it easy

Attachments:
Similar questions