Math, asked by kanishktomar17, 9 months ago

Find the zeroes of the polynomial √2x 2 + 7x + 5√2 and verify the relationship between its zeroes and coefficients.

Answers

Answered by mysticd
5

 Given \: polynomial \: \sqrt{2}x^{2}+7x+5\sqrt{2}

/* Splitting the middle term, we get */

 =\sqrt{2} x^{2} + 2x + 5x + 5\sqrt{2}

 = \sqrt{2} x^{2} +\sqrt{2} \times \sqrt{2}x + 5x + 5\sqrt{2}

 = \sqrt{2}x( x + \sqrt{2}) + 5(x + \sqrt{2})

 = (x+\sqrt{2})(\sqrt{2}x + 5 )

 So, the \: value \: of \::\sqrt{2}x^{2}+7x+5\sqrt{2}

 is \: zero \: when \:  x+\sqrt{2}= 0 \:Or \: \sqrt{2}x + 5 =0

 i.e., when \: x = -\sqrt{2} \:Or \: x = \frac{-5}{\sqrt{2}}

 \therefore The \: zeroes \:of \: \sqrt{2} x^{2} + 2x + 5x + 5\sqrt{2}\:are \: -\sqrt{2} \:and \: x = \frac{-5}{\sqrt{2}}

Now, \blue{i) the \: sum \:zeroes \:of \:\sqrt{2}x^{2}+7x+5\sqrt{2} }

 = - \sqrt{2} + \Big( \frac{-5}{\sqrt{2}}\Big)

 = - \sqrt{2} - \Big( \frac{5}{\sqrt{2}}\Big)

 = \frac{-(\sqrt{2})^{2} - 5)}{\sqrt{2}}

 = \frac{- 2 -5}{\sqrt{2}}

 = \frac{- 7}{\sqrt{2}}

 \green {= \frac{- Coefficient \:of \: x }{coefficient \:of \:x^{2}}}

 \blue {ii) the \: Product \:zeroes \:of \:\sqrt{2}x^{2}+7x+5\sqrt{2}}

 = (- \sqrt{2}) \times \Big( \frac{-5}{\sqrt{2}}\Big)

 =5

 = \frac{5}{1}

\green { = \frac{ Constant \: term }{Coefficient \: of \:x^{2}}}

•••♪

Similar questions