Math, asked by lroshistyle, 1 year ago

Find the zeroes of the polynomial 3x²-4x-7 and verify the relationship between the zeroes and coefficient

Answers

Answered by hnii123
2

Step-by-step explanation:

factorise the equation by splitting method

Attachments:
Answered by vikashpatnaik2009
1

Answer:

Let f(x)=3x  

2

+4x−4.

Comparing it with the standard quadratic polynomial ax  

2

+bx+c, we get,

a=3, b=4, c=−4.

Now, 3x  

2

+4x−4

=3x  

2

+6x−2x−4

=3x(x+2)−2(x+2)

=(x+2)(3x−2).

The zeros of f(x) are given by f(x)=0.

=>(x+2)(3x−2)=0

=>x+2=0,3x−2=0

=>x=−2,x=  

3

2

​  

.

Hence the zeros of the given quadratic polynomial are −2,  

3

2

​  

.

Verification of the relationship between the roots and the coefficients:

Sum of the roots =−2+  

3

2

​  

 

                            =  

3

−6+2

​  

 

                            =  

3

−4

​  

 

                            =  

coefficientofx  

2

 

−coefficientofx

​  

.

Product of the roots =−2×(  

3

2

​  

)

                                  =  

3

−4

​  

 

                                  =  

coefficientofx  

2

 

constantterm

​  

.

Therefore, hence verified.

Similar questions