Find the zeroes of the polynomial 3x²-x-4 and verify the
relationship between Zeroes and co-efficients.
Answers
Answered by
332
Step-by-step explanation:
Given polynomial is 3x² - x - 4.
So,
⇒ 3x² - x - 4
⇒ 3x² - 4x + 3x - 4
⇒ x(3x - 4) + 1 (3x - 4)
⇒ (3x - 4) (x + 1)
Zeros :
• 3x - 4 = 0
⇒ 3x = 4
⇒ x = 4/3
• x + 1 = 0
⇒ x = -1
Thus,
Zero's of polynomial are 4/3 and -1.
Now,
Sum of zeros = α + β
⇒ 4/3 + -1
⇒ [4 + (-3)]/3
⇒ 1/3
⇒ b/a
Product of zeros = αβ
⇒ 4/3 × (-1)
⇒ -4/3
⇒ c/a
This verify the relation!!
Answered by
366
Given :-
3x² - x - 4
To Find :-
Find the zeroes and verify the relationship
Solution :-
3x² - x - 4
3x² - (4x - 3x) - 4
3x² - 4x + 3x - 4
x(3x - 4) + 1(3x - 4)
(3x - 4)(x + 1)
Either
3x - 4 = 0
3x = 4
x = 4/3
or
x + 1 = 0
x = 0 - 1
x = -1
Zeroes = 4/3,-1
Now
Sum of zeroes = -b/a
4/3 + (-1) = -(-1)/3
4/3 - 1 = 1/3
4 - 3/3 = 1/3
1/3 = 1/3
Product of zeroes = c/a
4/3/-1 = -4/3
4/3 × -1 = -4/3
-4/3 = -4/3
Similar questions