Math, asked by rajatd12, 4 months ago

find the zeroes of the polynomial 6x²-17x+12 and verify the relationship between zeroes and coefficient of polynomial​

Answers

Answered by Intelligentcat
39

Given :

  • f(x) = 6² - 17x + 12

Then,

By using Middle term splitting method :

:\implies \sf {f(x) = 6x^{2} - 17x + 12} \\ \\

:\implies \sf{f(x) = 6x^{2} - (9 +8)x + 12} \\ \\

:\implies \sf{f(x) = 6x^{2} - 9x - 8x + 12} \\ \\

:\implies \sf{f(x) = 3x(2x - 3) - 4 (2x - 3)} \\ \\

:\implies \sf{f(x) = (3x - 4)(2x - 3)}  \\ \\

Now,

:\implies \sf{ (3x - 4) = 0 } \\ \\

:\implies \sf{ 3x = 4 } \\ \\

:\implies \sf{ x =\dfrac{4}{3} }  \\ \\

Or

:\implies \sf{ (2x - 3) = 0 }  \\ \\

:\implies \sf{ 2x = 3}  \\ \\

:\implies \sf{ x =\dfrac{3}{2} }  \\ \\

:\implies \sf{ \alpha = \dfrac{4}{3} \: or \: \beta \: = \dfrac{3}{2}} \\ \\

α = 4/3 and β = 3/2 are the zeroes of the polynomial f(x).

  • Given Polynomial = f(x) = 6² - 17x + 12

Let's compare it with the general form of quadratic equation :

 \bold{Quadratic \: Equation: \: ax^2+bx+c=0}

  • \Rightarrow{ a = 6}
  • \Rightarrow{ b = -17}
  • \Rightarrow{ c = 12}

Verifying relation between zeroes and coefficients

 \textsf{Sum of  the Zeroes }

\longrightarrow\sf - {Coefficient \: of \:  x/Coefficient \: of \: x^{2}}

:\implies \sf{ \alpha + \beta =  \dfrac{17}{6}}\\ \\

:\implies \sf{ \dfrac{4}{3} + \dfrac{3}{2} = \dfrac{17}{6}}\\ \\

:\implies \sf{ \dfrac{(2 \times 4) + (3 \times 3)}{6}  = \dfrac{17}{6}}\\ \\

:\implies \sf{ \dfrac{8 + 9}{6} =  \dfrac{17}{6}}\\ \\

:\implies \bf{ \dfrac{17}{6} =  \dfrac{17}{6}}\\ \\

⠀⠀\underline{\bf{LHS = R.H.S}}

_________________________

\textsf{Product of  the Zeroes }

\longrightarrow\sf{Constant \:  Term/Coefficient \: of \: x^{2}}

:\implies \sf{ \alpha \times \beta =  \dfrac{12}{6} } \\ \\

:\implies \sf{ \alpha \times \beta =  2 } \\ \\

:\implies \sf{ \dfrac{4}{3} \times {3}{2} =  2 } \\ \\

:\implies \sf{ \dfrac{12}{6} = 2} \\ \\

:\implies \bf{ 2 = 2 }\\ \\

⠀⠀\underline{\bf{LHS = R.H.S}}

Hence,

The relation between them also verified.

{\boxed{\bf{Verified}}} \\

Answered by Sankalp050
15

Answer:

6 {x}^{2}  - 17x + 12 \\  \\  = 6 {x}^{2}  - 9x - 8x + 12 \\  \\  = 3x(2x - 3) - 4(2x - 3) \\  \\  = (2x - 3)(3x - 4) \\  \\  \\  \boxed{zeros =  \frac{3}{2}  \:  \: and \:  \:  \frac{4}{3} }

Similar questions