Math, asked by ksailendra254, 11 months ago

find the zeroes of the polynomial f(x)=√3x² + 5x–8√3 and verify the relationship between the zeroes and it's coefficient​

Answers

Answered by Shashwat2232
1

Answer:

Step-by-step explanation:

Attachments:
Answered by arunyadav1973
0

Solution :-

 \sqrt{3}  {x}^{2}  + 5x  - 8 \sqrt{3}  = 0\\ by \: factorisation \:  method \\   \sqrt{3}  {x}^{2}  + 8x - 3x  - 8 \sqrt{3}  = 0 \\ ( \sqrt{3}  {x}^{2}  + 8x)( - 3x - 8 \sqrt{3} ) = 0 \\ x( \sqrt{3}x  + 8) -  \sqrt{3} ( \sqrt{3} x + 8) = 0 \\ ( \sqrt{3}x  + 8)(x -  \sqrt{3} ) = 0 \\  \sqrt{3}x + 8 = 0 \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \: x -  \sqrt{3 }   = 0 \\  \sqrt{3} x =  - 8 \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x =  \sqrt{3}  \\ x =  \frac{ - 8}{ \sqrt{3} }  \:  \:  \:  \:  \:  \: or \:  \:  \:  \: x =  \sqrt{3}

We find the factors 0f quadratic equation are 8 & -3

Let change the sign

-8, -3

Now,

Coefficient of x^2 is

 \sqrt{3}

If we divide by Coefficient of x^2 to factors

We get the zeros are opposite number of factors

Let

factors \: are \: 8 \:  \: and \:  \: -  3 \: let \: the \: change \: sign \\  - 8 \:  \:  \:and \:  \:  \: 3  \\ we \: divide \: by \: coefficient \: of \:  {x}^{2}  \\  \frac{ - 8}{ \sqrt{3} }  \:  \:  \:  \: and \:  \frac{3}{ \sqrt{3} }  =  \sqrt{3}

Similar questions