Math, asked by kartiakaytyagi905, 2 months ago

Find the zeroes of the polynomial f(x)=x(x + 2)(x +7).​

Answers

Answered by akram0730ah730354068
0

Answer:

We have,

f(x)=x  

2

−2

        =x  

2

−(  

2

)  

2

 

        =(x−  

2

)(x+  

2

)

The zeroes off(x) are given by f(x)=0

(x−  

2

)(x+  

2

)=0

(x−  

2

)=0 or,(x+  

2

)=0

x=  

2

 or x=−  

2

 

Thus ,the zeroes of f(x) are α=  

2

 and β=−  

2

 

Now,

Sum of the zeroes=α+β=  

2

+(−  

2

)

                             =0

and, −(  

coefficient of x  

2

 

coefficient of x

)=−(  

1

0

)=0

Therefore sum of the zeroes=−(  

coefficient of x  

2

 

coefficient of x

)

Product of the zeroes=α×β=  

2

×−  

2

=−2

and,  

coefficient of x  

2

 

constant term

=  

1

−2

=−2

Therefore, product of zeros =  

coefficient of x  

2

 

constant term

 

Step-by-step explanation:

We have,

f(x)=x  

2

−2

        =x  

2

−(  

2

)  

2

 

        =(x−  

2

)(x+  

2

)

The zeroes off(x) are given by f(x)=0

(x−  

2

)(x+  

2

)=0

(x−  

2

)=0 or,(x+  

2

)=0

x=  

2

 or x=−  

2

 

Thus ,the zeroes of f(x) are α=  

2

 and β=−  

2

 

Now,

Sum of the zeroes=α+β=  

2

+(−  

2

)

                             =0

and, −(  

coefficient of x  

2

 

coefficient of x

)=−(  

1

0

)=0

Therefore sum of the zeroes=−(  

coefficient of x  

2

 

coefficient of x

)

Product of the zeroes=α×β=  

2

×−  

2

=−2

and,  

coefficient of x  

2

 

constant term

=  

1

−2

=−2

Therefore, product of zeros =  

coefficient of x  

2

 

constant term

 

Similar questions