Math, asked by VijayaLaxmiMehra1, 1 year ago

Find the zeroes of the polynomial p ( x ) = √3x^2 + 10x + 7√3


Answers

Answered by Gauravkumarsahani
1
√3x²+10x+7√3
√3x²+7x+3x+7√3
x(√3x+7)+√3(√3x+7)
(x+√3)(√3x+7)
x+√3=0 | √3x+7=0
x=-√3 | x= - 7/√3
Answered by abhi569
7
If we want to get the zeroes of the polynomial, polynomial must be equal to 0.

Then,



= > √3 x² + 10 x + 7√3 = 0

= > √3 x² + ( 7 + 3 ) x + 7√3 = 0

= > √3 x² + 7x + 3x + 7√3 = 0

= > x( √3 x + 7 ) + √3( √3 x + 7 ) = 0

= > ( x + √3 ) ( √3 x + 7 ) = 0



 \:  \:  \:  \:  \:  \:  \:  \:  \: By  \: Zero \:  Product  \: Rule  ,  \:



= > x = - √3


Or ,


= > √3 x = - 7

 =  > x =    - \frac{7}{ \sqrt{3} }  \\  \\  \\  =  > x =  -  \frac{7 \sqrt{3} }{ \sqrt{3} \times  \sqrt{3}  }  \\  \\  \\  =  > x =  -  \frac{7 \sqrt{3} }{3}






<br />Hence,  \: Zeroes  \: of \:  the \:  given \:  polynomia l  \: are   \:  \: -  \frac{7 \sqrt{3} }{3}  \: and \:  -  \sqrt{3}
Similar questions