Find the zeroes of the polynomial p ( x ) = √3x^2 + 10x + 7√3
Answers
Answered by
1
√3x²+10x+7√3
√3x²+7x+3x+7√3
x(√3x+7)+√3(√3x+7)
(x+√3)(√3x+7)
x+√3=0 | √3x+7=0
x=-√3 | x= - 7/√3
√3x²+7x+3x+7√3
x(√3x+7)+√3(√3x+7)
(x+√3)(√3x+7)
x+√3=0 | √3x+7=0
x=-√3 | x= - 7/√3
Answered by
7
If we want to get the zeroes of the polynomial, polynomial must be equal to 0.
Then,
= > √3 x² + 10 x + 7√3 = 0
= > √3 x² + ( 7 + 3 ) x + 7√3 = 0
= > √3 x² + 7x + 3x + 7√3 = 0
= > x( √3 x + 7 ) + √3( √3 x + 7 ) = 0
= > ( x + √3 ) ( √3 x + 7 ) = 0
= > x = - √3
Or ,
= > √3 x = - 7
Then,
= > √3 x² + 10 x + 7√3 = 0
= > √3 x² + ( 7 + 3 ) x + 7√3 = 0
= > √3 x² + 7x + 3x + 7√3 = 0
= > x( √3 x + 7 ) + √3( √3 x + 7 ) = 0
= > ( x + √3 ) ( √3 x + 7 ) = 0
= > x = - √3
Or ,
= > √3 x = - 7
Similar questions