Find the zeroes of the polynomial p(x)= x^3-2x^2-49x+98 if its two zeroes are equal in magnitude but opposite in sign.
Answers
Answered by
39
Given 2 of its roots are equal but of opposite signs
Let α,β be equal roots
such that β = -α
From this polynomial,
Sum of the roots ⇒ α+β+Δ = -coefficient of x²/ coefficient of x³
⇒ α-α+Δ = -(-2)/1
Δ = 2 --------- One of the root (1)
Product of roots ⇒ αβΔ = -constant/coefficient of x³
⇒ α(-α)Δ = -98/1
⇒ -α²Δ = -98
⇒ α²Δ = 98
From(1), Substituting Δ=2
⇒ α²×2 = 98
⇒ α² = 98/2
⇒ α² = 49
⇒ α = √49 = +-7
⇒ α = +7 or -7 {where -7 = -α = β}
Therefore, the three roots of given polynomial x³-2x²-49x+98 α,β,Δ are +7,-7,2
Let α,β be equal roots
such that β = -α
From this polynomial,
Sum of the roots ⇒ α+β+Δ = -coefficient of x²/ coefficient of x³
⇒ α-α+Δ = -(-2)/1
Δ = 2 --------- One of the root (1)
Product of roots ⇒ αβΔ = -constant/coefficient of x³
⇒ α(-α)Δ = -98/1
⇒ -α²Δ = -98
⇒ α²Δ = 98
From(1), Substituting Δ=2
⇒ α²×2 = 98
⇒ α² = 98/2
⇒ α² = 49
⇒ α = √49 = +-7
⇒ α = +7 or -7 {where -7 = -α = β}
Therefore, the three roots of given polynomial x³-2x²-49x+98 α,β,Δ are +7,-7,2
Similar questions
India Languages,
8 months ago
Biology,
1 year ago