Math, asked by deepadharshini5, 3 months ago

Find the zeroes of the polynomial p(x) = x2

- 2√ x + 2 and verify the relationship

between the zeroes and the coefficients.​

Answers

Answered by BeautifulWitch
1

Answer:

 {x}^{2}  - 2 \sqrt{2x}  = 0  \: ⇒ { \purple{a{x}^{2} +bx+c⇒}}

a=1 \: b= - 2  \sqrt{2}

x(x−2 \sqrt{2}) = 0

{{ \purple{x=0,2 \sqrt{2}}}}

 { \boxed{ \huge{ \red{∴∝ = 0, \beta  = 2 \sqrt{2}}}}}

{ \purple{∝+β= \frac{ - b}{a}}}

∝+β= \frac{ - ( - 2 \sqrt{2}) }{1}

 { \huge{ \boxed{ \red{∝+β= 2 \sqrt{2} }}}}

{ \purple{∝×β= \frac{c}{a} }}

∝×β= \frac{0}{1}

{ \huge{ \boxed{ \red{∝×β= 0}}}}

0 + 2 \sqrt{2}  = 2 \sqrt{2}

( - 2 \sqrt{2}  \times 0) = 0

{ \huge{ \boxed{ \red{L.H.S=R.H.S }}}}  

Step-by-step explanation:

Hope this helps you ✌️

Similar questions