Math, asked by srawan64, 10 months ago

Find the zeroes of the polynomial : p(x) = x² - 9​

Answers

Answered by Anonymous
255

\huge\sf\red{\underline{\underline{Given}}}\::

\begin{cases}\sf\gray{{x}^{2} \ - \ 9 \ = \ 0}\end{cases}

\huge\sf\blue{\underline{\underline{To\:Find}}}\::

\begin{cases}\sf\gray{zeroes \: of \: polynomial}\end{cases}

\huge\sf\pink{\underline{\underline{Solution}}}\::

 {\bold{\underline{\orange{As \: we \: know \: that}}}} \\\\  \mapsto\:\:{\sf{\purple{  {x}^{2}  - 9 = 0}}} \\  \\ \mapsto\:\:{\sf{\green{{x}^{2}  = 9}}} \\  \\ \mapsto\:\:{\sf{\purple{ x =  \sqrt{9}}}}  \\  \\   \mapsto\:\:{\sf{\purple{ x =  \pm3}}} \\  \\  {\bold{\underline{\orange{Alternate \: method  }}}} \\ \\  \mapsto\:\:{\sf{\purple{  {x}^{2}  - 9 = 0}}} \\  \\   {\sf{\green{\bullet\:\: \: a = 1 \:  \:   \: \:  \: b = 0  \:  \:  \:  \:  \: c =  - 9}}}\\  \\  \mapsto\:\:{\sf{\purple{  x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}}}}  \\  \\  \mapsto\:\:{\sf{\green{  x =  \frac{ - 0  \pm \sqrt{ {0}^{2} - 4 \times 1 \times ( - 9) } }{2 \times 1}}}}  \\  \\  \mapsto\:\:{\sf{\purple{  x =  \frac{ \pm \sqrt{36} }{2}}}}  \\  \\  \mapsto\:\:{\sf{\green{  x =   \frac{ \pm6}{2} }}} \\  \\  \star\:{\boxed{\sf{\red{  x =  \pm 3}}}}

Answered by 1Angel25
3
\huge{\underline{\tt{QUESTION:-}}}

Find the zeroes of the polynomial : p(x) = x² - 9​

\huge{\underline{\tt{ANSWER:-}}}

Refer to the attachment !
Attachments:
Similar questions