Math, asked by vidyasachi456, 11 months ago

find the zeroes of the polynomial polynomial x3_5x2_2x+24 lf it is given that the product of two zeroes is 12​

Answers

Answered by mddilshad11ab
107

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{let:}}}}

  • \sf{The\:zeroes\:of\: polynomial\be\:\alpha,\beta,\gamma}

\small{\underline{\green{\rm{Given:}}}}

  • \rm{f(x)=x^3-5x^2-2x+24}
  • \rm{The\: product\:2\: zeroes=12}

\small{\underline{\orange{\rm{To\: Find:}}}}

  • \sf{The\: zeroes\:of\:polynomial=?}

\sf\large{Formula\: used\:to\: calculate\: zeroes}

\small{\underline{\green{\rm{Sum\:of\:zeroes\:of\:f(x):}}}}

\sf{\implies \alpha+\beta+\gamma=\frac{-\:cofficient\:of\:x^2}{cofficient\:of\:x^3}}

\small{\underline{\red{\rm{Product\:of\:zeroes\:of\:f(x):}}}}

\sf{\implies \alpha\beta\gamma=\frac{-constant\:term}{cofficient\:of\:x^3}}

\small{\underline{\orange{\rm{According\:to\: above\: information:}}}}

\rm{The\: product\:2\: zeroes=12}

\rm{\implies \alpha*\beta=12}

\rm\purple{\implies \alpha\beta=12-------(i)}

\rm{\implies \alpha+\beta+\gamma=\dfrac{-(-5)}{1}}

\rm\purple{\implies \alpha+\beta+\gamma=5-----(ii)}

\rm{\implies \alpha\beta\gamma=\dfrac{-24}{1}}

\rm\purple{\implies \alpha\beta\gamma=-24------(iii)}

  • \sf{Putting\:the\: value\:of\:\alpha\beta=12\:in\:eq\:iii}

\rm{\implies \alpha\beta\gamma=-24}

\rm{\implies 12\gamma=-24}

\rm\red{\implies \gamma=-2}

  • \sf{Putting\:the\: value\:of\:\gamma=-2\:in\:eq\:ii}

\rm{\implies \alpha+\beta+\gamma=5}

\rm{\implies \alpha+\beta-2=5}

\rm{\implies \alpha+\beta=5+2}

\rm\purple{\implies \alpha+\beta=7------(iv)}

\rm{\implies \alpha=7-\beta}

  • \sf{squaring\:on\: both\: sides}

\rm{\implies (\alpha+\beta)^2=7^2}

\rm{\implies \alpha^2+\beta^2+2\alpha\beta=7^2}

  • \sf{Putting\:the\: value\:of\:\alpha\beta=12\:in\:eq\:iv}

\rm{\implies \alpha^2+\beta^2+2*12=7^2}

\rm{\implies \alpha^2+\beta^2+24=49}

\rm{\implies \alpha^2+\beta^2=49-24}

\rm\purple{\implies \alpha^2+\beta^2=25-------(v)}

  • \sf{putting\:\alpha=7-\beta\:here}

\rm{\implies \alpha^2+\beta^2=25}

\rm{\implies (7-\beta)^2+\beta^2=25}

\rm{\implies 49-14\beta+\beta^2+\beta^2=25}

\rm{\implies 2\beta^2-14\beta+49-25=0}

\rm{\implies 2\beta^2-14\beta+24=0}

  • \sf{dividing\:by\:2\:on\:side\:here}

\rm{\implies \beta^2-7\beta+12=0}

  • \sf{Splitting\: middle\: term\: here}

\rm{\implies \beta^2-3\beta-4\beta+12=0}

\rm{\implies \beta(\beta-3)-4(\beta-3)=0}

\rm{\implies (\beta-4)(\beta-3)=0}

\rm\red{\implies \beta=4\:and\:3}

  • \sf{both\: value\:are\: positive\:so\:we\:take\: anyo}
  • \sf{The\: value\:of\:\beta=3\:here}

\rm{\implies \alpha+\beta=7}

\rm{\implies \alpha+3=7}

\rm{\implies \alpha=7-3}

\rm\red{\implies \alpha=4}

Hence,

\sf\orange{\implies The\: zeroes\:of\: polynomial=4,\:3,\:and\:-2}

Similar questions