Find the zeroes of the polynomial such that thier sum and product are 1/4 and -1
Answers
Answer:
Zeros : (1 + √65)/8 , (1 - √65)/8
Polynomial : x² - x/4 - 1
Note:
★ (a + b)² = a² + 2ab + b²
★ (a - b)² = a² - 2ab + b²
★ a² - b² = (a + b)(a - b)
★ (a + b)³ = a³ + b³ + 3ab(a + b)
★ (a - b)³ = a³ + b³ - 3ab(a - b)
★ a³ + b³ = (a + b)(a² - ab + b²)
★ a³ - b³ = (a - b)(a² + ab + b²)
Solution:
Let A and B be the zeros of the polynomial .
Also,
It is given that , the sum and the product of zeros of the polynomial are 1/4 and -1 respectively .
Thus,
A + B = 1/4 ---------(1)
AB = -1 ---------(2)
Now,
=> (A - B)² = (A + B)² - 4AB
=> (A - B)² = (1/4)² - 4(-1)
=> (A - B)² = 1/16 + 4
=> (A - B)² = (1 + 64)/16
=> (A - B)² = 65/16
=> A - B = √(65/16)
=> A - B = √65 / 4 ----------(3)
Now,
Adding eq-(1) and (2) , we get ;
=> A + B + A - B = 1/4 + √65/4
=> 2A = (√65 + 1)/4
=> A = (√65 + 1)/8
Now ,
Putting A = (√65 + 1)/8 in eq-(1) , we get ;
=> A + B = 1/4
=> (√65 + 1)/8 + B = 1/4
=> B = 1/4 - (√65 + 1)/8
=> B = (2 - √65 - 1)/8
=> B = (1 - √65)/8
Hence,
The zeros of the polynomial are ;
(1 + √65)/8 , (1 - √65)/8
Moreover,
The polynomial will be given as ;
x² - (A + B)x + A•B
=> x² - (1/4)x + (-1)
=> x² - x/4 - 1