Math, asked by seema2345maurya, 3 months ago

find the zeroes of the polynomial when one of its zeroes is given p(x) x cube - 8x2 +19 x -12 , having one of its zeroes as 4​

Answers

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{A \:  polynomial \:  p(x) = {x}^{3}  - 8 {x}^{2} + 19x - 12 } \\ &\sf{having \: one \: zero \: as \: 4} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{remaining \: zeroes \: of \: p(x)}  \end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

We know that

 \sf \: If  \: p(x) \:  =  \: a {x}^{3} +  b {x}^{2} +  cx + d \: having \: zerors \:  \alpha,  \beta,  \gamma  \: then

Sum of zeroes taken one at a time is

 \boxed{ \sf \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a} }

and

Product of zeroes is

 \boxed{ \sf \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a} }

Now,

Given that

\rm :\longmapsto\:p(x) =  {x}^{3}  -  {8x}^{2}  + 19x - 12

 \sf \: On  \: comparing \:  with\: a {x}^{3} +  b {x}^{2} +  cx + d  \: we \: have

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: a \:  =  \: 1

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: b =  - 8

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: c = 19

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: d =  - 12

Also,

Given that one zero of p(x) is 4.

\rm :\longmapsto\:Let \:  \alpha  = 4

Since, p(x) is a cubic polynomial, so it has 3 zeroes.

\rm :\longmapsto\:Let \: remaining \: zeroes \: be \:  \beta  \: and \:  \gamma

Now,

We know that

\rm :\longmapsto\:\sf \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}

On substituting the values, we get

\rm :\longmapsto\:\sf \:  4  +  \beta  +  \gamma  =  - \dfrac{( - 8)}{1}

\bf\implies \: \beta   + \gamma  = 4

\bf\implies \: \gamma = 4 -   \beta  -  -  - (1)

Also,

\rm :\longmapsto\:\sf \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}

On substituting the values, we get

\rm :\longmapsto\:\sf \: 4 \times   \beta  \gamma  =  - \dfrac{( - 12)}{1}

\rm :\longmapsto\: \beta  \gamma  = 3

\rm :\longmapsto\: \beta (4 -  \beta ) = 3

\rm :\longmapsto\:4\beta -  {\beta}^{2}  = 3

\rm :\longmapsto\: {\beta}^{2}  - 4\beta + 3 = 0

\rm :\longmapsto\: {\beta}^{2}  - 3\beta - \beta + 3 = 0

\rm :\longmapsto\:\beta(\beta - 3) - 1(\beta - 3) = 0

\rm :\longmapsto\:(\beta - 3)(\beta - 1) = 0

\bf\implies \:\beta = 3 \:  \:  \: or \:  \:  \: \beta = 1

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf  \beta  & \bf  \gamma  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 3 \\ \\ \sf 3 & \sf 1 \end{array}} \\ \end{gathered}

  • Hence, the zeroes of f(x) are 4, 1 and 3.

Similar questions