Math, asked by hunter5989, 1 month ago

find the zeroes of the polynomial x√2-x-p(p+1)​

Answers

Answered by mathdude500
5

Appropriate Question :-

Find the zeroes of the polynomial

\rm :\longmapsto\: {x}^{2} - x - p(p + 1)

\large\underline{\sf{Solution-}}

Given polynomial is represented as

\rm :\longmapsto\:f(x) =  {x}^{2} - x - p(p  + 1)

can be rewritten as

\rm :\longmapsto\:f(x) =  {x}^{2}  -  x(1) - p(p  + 1)

\rm :\longmapsto\:f(x) =  {x}^{2}  -  x(p + 1 - p) - p(p  + 1)

\rm :\longmapsto\:f(x) =  {x}^{2}  -  x(p + 1) + px - p(p  + 1)

\rm :\longmapsto\:f(x) =  x\bigg(x - (p + 1) \bigg)  +  p\bigg( x - (p + 1)\bigg)

\rm :\longmapsto\:f(x) =  (x +  p)\bigg(x - (p + 1) \bigg)

\rm :\longmapsto\:f(x) =  (x + p)(x - p  -  1)

\bf\implies \:Zeroes \: of \: f(x) \:  =  - p, \: p + 1

Additional Information :-

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c \: then \:

 \boxed{ \sf{ \:  \alpha  +  \beta  =  -  \:  \frac{b}{a}}}

and

 \boxed{ \sf{ \:  \alpha \beta  =  \:  \frac{c}{a}}}

Also,

 \boxed{ \sf{ \: { \alpha }^{2} +  { \beta }^{2}  = {( \alpha + \beta )}^{2} - 2\alpha   \beta   \: }}

 \boxed{ \sf{ \: { \alpha }^{3} +  { \beta }^{3}  = {( \alpha + \beta )}^{3} - 3\alpha   \beta( \alpha  +  \beta )   \: }}

Similar questions