Math, asked by siyad43, 10 months ago

Find the zeroes of the polynomial x²-2x-8
& verify the relationship between the zeroes
& coefficients​

Answers

Answered by Anonymous
41

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star  \:  \: \: {\sf{  {x}^{2}  - 2x + 8}} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

  • Relationship between the zeros and Coeffiicient

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{  {x}^{2} - 2x - 8 }} \\ \\

 : \implies{\sf{  {x}^{2} - 4x  + 2x -  8 }} \\ \\

 : \implies{\sf{  x(x - 4)  + 2(x -  4) }} \\ \\

 : \implies{\sf{  (x - 4)   ( x + 2) }} \\ \\

Take ,

◕ x- 4 = 0. and. x+2 =0

 : \implies{\sf \boxed{ x = 4}} \:  \:  \:  \: {\sf \boxed{ x =  - 2}} \\ \\

  • So the values of x²-2x-8 is zero when x=4 and x=-2.
  • Therefore,The zeros of x²-2x-8 are 4 and -2.

___________________________________

Now,

  \dagger \:  \:  \:  \boxed{\sf{ { \purple{Sum \: of \: zeros =  \frac{ - Coeffiicient \: of \: x}{Coeffiicient \: of \:  {x}^{2} } }}}} \\ \\

 : \implies{\sf{( 4) + ( - 2) =   - \frac { - 2}{1} }} \\ \\

 : \implies{\sf{4-2=   \frac {  2}{1} }} \\ \\

 : \implies{\sf{2=   2 }} \\ \\

Hence verified.

___________________________________

  \dagger \:  \:  \:  \boxed{\sf{ { \purple{Product \: of \: zeros =  \frac{constant\: term }{coeffiicient \: of \:  {x}^{2} } }}}} \\ \\

 : \implies{\sf{ (4) \times ( - 2) =  \frac{ - 8}{1} }} \\ \\

 : \implies{\sf{ -8 =  \frac{ - 8}{1} }} \\ \\

 : \implies{\sf{ -8=-8 }} \\ \\

Hence Verified.

Answered by Anonymous
41

S O L U T I O N :

We have p(x) = x² - 2x - 8

Zero of the polynomial p(x) = 0

So;

\longrightarrow\sf{x^{2} -2x-8=0}\\\\\longrightarrow\sf{x^{2} +2x-4x-8=0}\\\\\longrightarrow\sf{x(x+2)-4(x+2)=0}\\\\\longrightarrow\sf{(x+2)(x-4)=0}\\\\\longrightarrow\sf{x+2=0\:\:\:Or\:\:\:x-4=0}\\\\\longrightarrow\bf{x=-2\:\:\:Or\:\:\:x=4}

∴ The α = -2 and β = 4 are the zeroes of the polynomial.

As we know that given polynomial compared with ax² + bx + c;

  • a = 1
  • b = -2
  • c = -8

Now;

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\mapsto\tt{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2} } }\\\\\\\mapsto\tt{-2+4=\dfrac{-(-2)}{1}} \\\\\\\mapsto\bf{2=2}

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\mapsto\tt{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term}{Coefficient\:of\:x^{2} } }\\\\\\\mapsto\tt{-2\times 4=\dfrac{-8}{1}} \\\\\\\mapsto\bf{-8=-8}

Thus;

Relationship between zeroes and coefficient is verified .

Similar questions