Math, asked by vaibhavkushwah67, 9 months ago


Find the zeroes of the polynomial x2 + 3x – 2, and verify the
relation between the coefficients and the zeroes of the polynomial.

Answers

Answered by Anonymous
6

Answer:

x =  - 1 \: or \:  - 2

Step-by-step explanation:

 {x}^{2}  + 3x - 2 \\  {x}^{2}  + x + 2x  - 2 \\  x(x + 1) + 2(x + 1) \\ (x + 2)(x + 1) \\ equating \: each \: to \: zero \\ x + 2 = 0 \\

x =  - 2 \\ or \\ x + 1 = 0 \\ x =  - 1

veryfying  \:  \: \: relationship

 a = 1 \\ b = 3 \\ c =  - 2

let \:  \alpha  \:  =  - 1 \: and \:  \beta  =  - 2 \\  \alpha  +  \beta  =   \frac{ - b}{a} \\  \alpha  +  \beta  =  - 1 + ( - 2) \\  =  - 1 - 2 \\  =  - 3 \\

 \frac{ - b}{a}  \\  \frac{ - 3}{1}  \\  =  - 3 \\ so \:  \: l.h.s \:  \:  =  \:  \: r.h.s

 \alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta  = ( - 1)( - 2) \\  = - 2 \\  \frac{c}{a}  =  \frac{ - 2}{1}  \\  =  - 2 \\ so \: l.h.s \:  \:  =  \:  \: r.h.s

IF YOU FOUND IT HELPFUL THEN PLZ MARK AS BRAINLIEST

Answered by Anonymous
15

Solution :-

 {x}^{2}  + 3x - 2

We can't use mid term factoring theorem in this Polynomial so we'll have to use the quadratic formula .

x =  \frac{ - b +  \sqrt{ {b }^{2} - 4ac } }{2a}

Here, By comparing the given polynomial with ax² + bx +c

 \star \: a = 1 \\  \\  \star \: b \:  = 3 \\  \\  \star \: c =  - 2

: \implies \: x =  \frac{ - 3 +  \sqrt{( {3)}^{2} - 4 \times 1 \times ( - 2) } }{2 \times 1}  \\  \\ : \implies \: x =  \frac{ - 3  + \sqrt{9 + 8} }{2}  \\  \\ : \implies \: x =  \frac{ - 3 +  \sqrt{17} }{2}

So, the zeros are

 \star \: x =  \frac{ - 3 +  \sqrt{17} }{2}  \\  \\  \star \: x =  \frac{ - 3  -  \sqrt{17} }{2}

The relationship between coefficients and the zeroes :-

Let the zeros are α and β , so

\star \:  \alpha =  \frac{ - 3 +  \sqrt{17} }{2}  \\  \\  \star \:  \beta  =  \frac{ - 3  -  \sqrt{17} }{2}

First relation

 \alpha  +  \beta  =  -  \frac{b}{a}

\implies  \frac{ - 3 +  \sqrt{17} }{2}   +   \frac{ - 3  -  \sqrt{17} }{2}  =  -  \frac{3}{1}  \\  \\  \implies \:  \frac{ - 3 +  \sqrt{17}  - 3 -  \sqrt{17} }{2}  =  - 3 \\  \\  \implies \:  \frac{ - 6}{2}  =  - 3 \\  \\  \implies \:  - 3 =  - 3 \\  \\ l.h.s. = r.h.s

Second Relation

 \alpha  \beta  =  \frac{c}{a}

\implies  \frac{ - 3 +  \sqrt{17} }{2}    \times    \frac{ - 3  -  \sqrt{17} }{2}  =   \frac{ - 2}{1}  \\  \\  \implies \:  \frac{( -3 +  \sqrt{17} )( - 3 -  \sqrt{17} )}{4}  =  - 2 \\  \\  \implies \:  \frac{( \sqrt{17} - 3) \times  - ( \sqrt{17} + 3)  }{4}  =  - 2 \\  \\  \implies \:  \frac{ - ( \sqrt{17}  - 3)( \sqrt{17}  + 3) }{4}  =  - 2 \\  \\  \implies \:  -  \frac{( { \sqrt{17}) }^{2} - ( {3)}^{2}  }{4}  =  - 2 \\  \\  \implies \:  -  \frac{17 - 9}{4}  =  - 2 \\  \\  \implies \:  -  \frac{8}{4}  =  - 2 \\  \\  \implies \:  - 2 =  - 2 \\  \\ l.h.s. = r.h.s.

Hence Proved !!

Similar questions