Math, asked by moonarmy54271, 6 hours ago

Find the zeroes of the polynomial x2 -7X+12and verify the relationship between the zeroes and the coefficients.​

Answers

Answered by BlessedOne
31

Given :

  • Polynomial - \sf\:x^{2}-7x+12

To find :

  • Zeroes of the polynomial.
  • Verify the relationship between the zeroes and the coefficient.

Formula to be used :

For any quadratic equation ax² + bx + c = 0 having roots as α and β -

Sum of the roots -

\bf\color{purple}{\alpha + \beta = \frac{-b}{a}}

Product of the roots -

\bf\color{purple}{\alpha \times \beta = \frac{c}{a}}

We would use this formulae to verify the relationship between the zeroes.‎

Solution :

Calculating the zeroes if the polynomial by middle term breaking -

\sf\:x^{2}-7x+12=0

\sf\implies\:x^{2}-(4+3)x+12=0

\sf\implies\:x^{2}-4x-3x+12=0

\sf\implies\:x(x-4)-3(x-4)=0

\sf\implies\:(x-4)(x-3)=0

Either :

\sf\:x-4=0 \small{\underline{\boxed{\mathrm\purple{\dashrightarrow\:x~=~4}}}}

Or :

\sf\:x-3=0 \small{\underline{\boxed{\mathrm\purple{\dashrightarrow\:x~=~3}}}}

\sf\therefore\:Two~zeroes~of~the~polynomial~are~4~and~3

════════════════════‎

Verifying the relationship b/w the zeroes and the coefficient -

In the given polynomial - \sf\:x^{2}-7x+12

  • a = \bf\:1 , b = \bf\:(-7) and c = \bf\:12

\bf\maltese Sum of the zeroes -

\sf\twoheadrightarrow\:\alpha+\beta~=~\frac{-b}{a}

\sf\twoheadrightarrow\:4+3~=~\frac{-(-7)}{1}

\sf\twoheadrightarrow\:7~=~\frac{7}{1}

\small{\underline{\boxed{\mathrm{\twoheadrightarrow\:7~=~7}}}}

\bf\maltese Product of the zeroes -

\sf\twoheadrightarrow\:\alpha \times \beta~=~\frac{c}{a}

\sf\twoheadrightarrow\:4 \times 3~=~\frac{12}{1}

\small{\underline{\boxed{\mathrm{\twoheadrightarrow\:12~=~12}}}}

Hence Verified !~‎

════════════════════ ‎

Similar questions