find the zeroes of the polynomials and verify the relationship between the zeroes and coefficients 4x^2 - 4x +1
Answers
Answer:
Log in to add comment
Answers
DaInvincible12
DaInvincible12 Ace
Solution
Given
Let the given polynomial be r(x) = 4x² - 4x + 1
Now,
\sf \: f(x) = 4 {x}^{2} - 4x + 1 \\ \\ \implies \: \sf \: f(x) = 4x {}^{2} - 2x - 2x + 1 \\ \\ \implies \: \sf \: f(x) = 2x(2x - 1) - 1(2x - 1) \\ \\ \implies \: \sf \: \: f(x) = (2x - 1)(2x - 1)
From Remainder Theorem,
\sf \: f(x) = 0 \\ \\ \longrightarrow \: \sf \: (2x - 1)(2x - 1) = 0 \\ \\ \longrightarrow \: \boxed { \boxed {\sf \: x = \dfrac{1}{2} }}
Let \sf \alpha \ and \beta are the zeros of the f(x)
\sf \alpha = \dfrac{1}{2}
\sf \: \beta = \dfrac{1}{2}
Now,
Sum of Zeros
\sf \: \alpha + \beta \\ \\ \dashrightarrow \: \sf \: \dfrac{1}{2} + \dfrac{1}{2} \\ \\ \dashrightarrow \: \sf \: 1 \: \sim \: - ( - \dfrac{4}{4} )
Product Of Zeros
\sf \: \alpha \beta \\ \\ \dashrightarrow \sf \: \dfrac{1}{2} \times \dfrac{1}{2} \\ \\ \dashrightarrow \: \sf \: \dfrac{1}{4}
Step-by-step explanation:
Mark me brainiest and pls follow me
hii, i am sending your answer through image.
please mark me as brainlist if you found my answer helpful.