Math, asked by rohitmishra3215, 9 months ago

Find the zeroes of the quadractic polynomial 6x²-7x-3 and verify the relationship between the zeroes & the coefficients.

Answers

Answered by ShírIey
54

AnswEr :

\star \; \small\bold{\underline{\underline{\sf{\pink{Given \: polynomial : 6x^2 - 7x - 3}}}}}

:\implies\sf 6x^2 - 7x - 3 = 0 \\\\\\:\implies\sf 6x^2 - 9x +2x - 3 = 0 \\\\\\:\implies\sf 3x \Big(2x - 3 \Big) + 1 \Big(2x - 3 \Big) = 0\\\\\\:\implies\sf \Big(3x + 1 \Big) \Big(2x - 3 \Big) = 0\\\\\\:\implies\sf 3x + 1 = 0\\\\\\:\implies\sf  3x = - 1\\\\\\:\implies\sf  x = \dfrac{-1}{\: 3} \;\:\;\;\; \& \: \: \: \:  2x - 3 = 0\\\\\\:\implies\sf 2x = 3 \\\\\\:\implies\sf x = \dfrac{3}{2}

:\implies\sf \alpha = \dfrac{-1}{\:3} \:\:\&\;\; \beta =  \dfrac{3}{2}

\rule{150}2

\star \:\:\small\bold{\underline{\sf{\pink{ Relationship \: b/w \: Zeroes \: \& \: Coefficients}}}}

\underline{\dag\:\boldsymbol{Sum \: of \: Zeroes \: : }}

\dashrightarrow{\underline{\boxed{\sf{\purple{Sum \: of \: Zeroes = \alpha \:+\: \beta = \dfrac{-b}{a}}}}}}

:\implies\sf \bigg(\dfrac{-1}{\:3} + \dfrac{3}{2} \bigg) \\\\\\:\implies\sf \bigg(\dfrac{7}{6} = \dfrac{-b}{a} \bigg)

\rule{150}2

\underline{\dag\:\boldsymbol{Product \: of \:Zeroes \: }}

\dashrightarrow{\underline{\boxed{\sf{\purple{Product \: of \: Zeroes = \alpha \:\times \: \beta = \dfrac{c}{a}}}}}}

:\implies\sf \bigg( \dfrac{-1}{3} \times \dfrac{3}{2} \bigg) \\\\\\:\implies\sf \bigg(\dfrac{-3}{6} = \dfrac{ -1}{\: 2} = \dfrac{c}{a} \bigg)

Answered by Anonymous
1

Answer:

How to earn a special badge in brainly

Similar questions