Math, asked by gauranshisharma15, 10 months ago

find the zeroes of the quadratic bolynomial 6x² -3-7x
and verify the relationship between the zeroes and
the coefficients​

Answers

Answered by ksonakshi70
4

Answer:

let \:  \: p(x) = 6x {}^{2}  - 7x - 3  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: = 6x {}^{2}  + ( - 9 + 2)x - 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 6x {}^{2}  - 9x + 2x - 3  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 3x(2x - 3) + 1(2x - 3) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =( 3x + 1)(2x - 3) \\ for \: zeros \:  \\ p(x) = 0 \\(3x + 1) = 0  \\ 3x =  - 1 \\ x =  \frac{ - 1}{3} \:  \: and \:  \\ (2x - 3) = 0 \\2 x = 3 \\  x =  \frac{3}{2}  \\ let \:  \alpha  \: and \:  \beta are \: the \: zeros \: of \: p(x) \\ then \:  \\  \alpha  =  \frac{ - 1}{3}  \: and \:  \beta  =  \frac{3}{2}  \\ sum \: of \: zeros \:  =  \alpha +   \beta  \\  \frac{ - b}{a}  =   \frac{ - 1}{3}  +  \frac{3}{2}  =  \frac{ - 2 + 9}{6}  =  \frac{ 7}{6}  \\ product \: of \: zeros \:  =  \alpha  \beta  \\  \frac{c}{a}  =  \frac{ - 1}{3}  \times  \frac{3}{2}  =  \frac{ - 3}{6}

Answered by Anonymous
1

Answer:

Hey mate your answer is given below

Attachments:
Similar questions