Math, asked by saumya4162, 9 months ago

Find the zeroes of the quadratic polynomial √3x+-8x+4√3 and verify the relationship between the zeroes and the coefficients of the polynomial

Answers

Answered by Anonymous
21

\large{\underline{\bf{\pink{Answer:-}}}}

✰ x = 2√3 or x = 2/√3

\large{\underline{\bf{\blue{Explanation:-}}}}

\large{\underline{\bf{\green{Given:-}}}}

✰ f(x) = √3x² -8x+4√3

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the roots of the given polynomial. and also find the relationship between the zeroes and coefficients.

\huge{\underline{\bf{\red{Solution:-}}}}

f(x) = √3x² -8x+4√3

:\implies\:\sf\sqrt{3}x^2-6x-2x+4\sqrt{3}

:\implies\:\sf\sqrt{3}x(x-2\sqrt{3})-2(x-2\sqrt{3})

:\implies\:\sf(x-2\sqrt{3})(\sqrt{3}x-2)

:\implies\:\sf(x-2\sqrt{3})=0 \:or\:(\sqrt{3}x- 2)=0

:\implies\:\sf\:x=2\sqrt{3}\:or\:x=\frac{2}{\sqrt{3}}

So,

The zeroes of the given polynomial are 2√3 and 2/√3.

Sum of zeroes =\sf2\sqrt{3}+\frac{2}{\sqrt3}=\frac{8}{\sqrt{3}}

:\implies\sf\frac{6+2}{\sqrt3}=\frac{8}{\sqrt{3}}

:\implies\sf{\purple{\frac{8}{\sqrt3}=\frac{8}{\sqrt{3}}}}

product of zeroes =\sf2\sqrt{3}\times\frac{2}{\sqrt3}=\frac{4\sqrt{3}}{\sqrt{3}}

:\implies\sf{\purple{\frac{4\sqrt{3}}{\sqrt{3}}=\frac{4\sqrt{3}}{\sqrt{3}}}}

Hence,

\bf\green{Relationship\: between \:the \:zeroes\: and}\:\\\bf\green {coefficients\: is\: \underline{verified}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyPopularman
9

Correct Question :

▪︎ Find the zeroes of the quadratic polynomial √3x² - 8x + 4√3 = 0 and verify the relationship between the zeroes and the coefficients of the polynomial.

ANSWER :

 \\    \to \:  \: { \bold{ Roots \:  \:  = 2 \sqrt{3} \:  \: ,  \:  \:  \frac{2}{ \sqrt{3} }   }} \\

EXPLANATION :

GIVEN :

▪︎A quadratic equation √3x² - 8x + 4√3 = 0

TO FIND :

▪︎ Zero's of quadratic equation.

▪︎To Verify the relationship between the zeroes and the coefficients of the polynomial.

SOLUTION :

▪︎ According to the question –

 \\ \implies \: { \bold{ \sqrt{3}  {x}^{2} - 8x + 4 \sqrt{3}  = 0 }} \\

 \\ \implies \: { \bold{ \sqrt{3}  {x}^{2} - 6x  - 2x + 4 \sqrt{3}  = 0 }} \\

 \\   \implies \: { \bold{ \sqrt{3}x(x- 2 \sqrt{3})  - 2(x  -  2 \sqrt{3} ) = 0 }} \\

 \\   \implies \: { \bold{ (\sqrt{3} x - 2)(x- 2 \sqrt{3})  = 0 }} \\

 \\   \implies \: { \bold{ x =  \dfrac{2}{ \sqrt{3} }  \: ,  \: x = 2 \sqrt{3}  }} \\

▪︎ Now verification –

 \\    \: { \bold{ (1) \: sum \:  \: of \:  \: roots \:  \:   =  -  \frac{b}{a} }} \\

 \\    \: { \bold{  \implies \: 2 \sqrt{3} + \frac{2}{ \sqrt{3} }    =  -  \frac{( - 8)}{ \sqrt{3} } }} \\

 \\    \: { \bold{  \implies \: \frac{6 + 2}{ \sqrt{3} }    =    \frac{ 8}{ \sqrt{3} } }} \\

 \\    \: { \bold{  \implies \: \frac{8}{ \sqrt{3} }    =    \frac{ 8}{ \sqrt{3} }  \:  \:  \:  \:  \: (verified)}} \\

 \\   \: { \bold{ (2) \: Product \:  \: of \:  \: roots \:  \:  =   \frac{c}{a} }} \\

 \\    \implies \: { \bold{  \: (2 \sqrt{3} )( \frac{2}{ \sqrt{3} })  =    \dfrac{4 \sqrt{3} }{ \sqrt{3} } }} \\

 \\    \implies \: { \bold{  \: 4  = 4 \:  \:  \:  \:  \:  \: (verified) }} \\

Similar questions