History, asked by surajsathyan777, 11 months ago

find the zeroes of the quadratic polynomial 3x2 -75 and verify the relationship between zeroes and coefficients

Answers

Answered by rishikapaul69
158

3x ^{2}  - 75 = 0

3(x ^{2}  - 25) = 0

3((x) ^{2}  - (5) ^{2} ) = 0

3(x + 5)(x  - 5) = 0

(x + 5)(x - 5) = 0

either

x + 5 = 0

x =  - 5

or

x -5  = 0

x = 5

verification

sum \:  \: of \:  \: zeroes \:  \:  =  \frac{ - b}{a}

5 + ( - 5) =  \frac{0}{3}

0 = 0

product \:  \: of \:  \: zeroes =  \frac{c}{a}

5 \times ( - 5) =  \frac{ - 75}{3}

 - 25 =  - 25

Answered by brainlllllllllly
21

3x ^{2}  - 75 = 0

3(x ^{2}  - 25) = 0

3((x) ^{2}  - (5) ^{2} ) = 0

3(x + 5)(x  - 5) = 0

(x + 5)(x - 5) = 0

either

x + 5 = 0

x =  - 5

or

x -5  = 0

x = 5

verification

sum \:  \: of \:  \: zeroes \:  \:  =  \frac{ - b}{a}  

5 + ( - 5) =  \frac{0}{3}  

0 = 0  

product \:  \: of \:  \: zeroes =  \frac{c}{a}  

5 \times ( - 5) =  \frac{ - 75}{3}  

 - 25 =  - 25

Similar questions