Math, asked by mamtaitkelwar, 1 month ago

Find the zeroes of the quadratic Polynomial 3x2 – x – 4 and verify the relationship between
the zeroes and the coefficient.

Answers

Answered by dkyjune04
4

Answer:

4/3 ,  -1

Step-by-step explanation:

3x²-x-4 =0

3x²-4x+3x-4 =0

x(3x-4) + 1(3x-4) = 0

(3x-4) (x+1) = 0

x = 4/3  ,   x= -1

Answered by ItzAakanksha77
5

Given :-

 \:  \mapsto \tt \: p(x) = 3 {x}^{2}  - x - 4 \\  \\ \mapsto \tt \: 3 {x}^{2}  - (4 - 3)x - 4 \\ \\ \tt \mapsto3 {x}^{2}  - 4x + 3x - 4 \\ \\ \tt \mapsto  \: x(3x - 4) + 1(3x - 4) \\ \\ \tt \mapsto  \: (3x - 4)(x + 1) \\ \\

Now ,

\tt \: \mapsto \: 3x - 4 = 6 \\ \\ \tt \: \mapsto3x = 4 \\ \\ \tt \: \mapsto \: x =  \frac{4}{3} \\ \\

And ,

\tt \: \mapsto \: x + 1 = 0 \\ \\ \tt \: \mapsto \: x = ( - 1) \\ \\

\tt \: the \: two \: zeros \: of \: p(x) \: are \:  \frac{4}{3} \: and \:  - 1 \\ \\

We know that ,

\tt \: \dashrightarrow \: \frac{4}{3} = 1

So ,

\tt \: \rightarrow \: \:  \frac{ - coefficient \: of \: x \: }{coeffficient \: of \:  {x}^{2} } \\ \\ \tt \: \rightarrow \: \frac{1}{3}  =  \: sum \: of \: zeros \: \\ \\ \tt \: \rightarrow \: \: product \: of \: zeros \: ( \gamma  \:  \beta ) \\ \\ \tt \: \rightarrow \: \:  \frac{4}{3}  \times  - 1 \:  =  \frac{ - 4}{3} \\ \\

So ,

\tt \: \longmapsto \: \:  \frac{constant}{coefficient \: of \:  {x}^{2} }  \\ \\  \tt \: \longmapsto \: \frac{ - 4}{3}  = product \: of \: zeros \\ \\

Hence ,

  • x = -1

\ \: \: \: \: \: \: ••Notice•• \ \: \: \: \: \: \:

Hope it is helpful but if you have any doubt in my answer then let me know.

\ \: \: \: \: \: \: ••••••••thanks•••••••• \ \: \: \: \: \: \:

Similar questions