Math, asked by shreyabhanti, 1 year ago

Find the zeroes of the quadratic polynomial 4x2 – 6 – 8x and verify the relationship between the zeroes and the coefficients of the polynomial.​

Answers

Answered by pinquancaro
30

The roots are x=\frac{2+\sqrt{10}}{2},\frac{2-\sqrt{10}}{2}.

Step-by-step explanation:

Given : Quadratic polynomial 4x^2-6-8x

To find : The zero of the quadratic polynomial and verify the relationship between the zeroes and the coefficients of the polynomial ?

Solution :

Let \alpha,\beta are the roots of the equation.

The polynomial in equation form, 4x^2-8x-6=0

2x^2-4x-3=0

Here, a=2, b=-4 and c=-3.

Using quadratic formula, x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-(-4)\pm\sqrt{(-4)^2-4(2)(-3)}}{2(2)}

x=\frac{4\pm\sqrt{40}}{4}

x=\frac{4\pm2\sqrt{10}}{4}

x=\frac{2\pm\sqrt{10}}{2}

The roots are \alpha=\frac{2+\sqrt{10}}{2},\beta=\frac{2-\sqrt{10}}{2}

The sum of roots \alpha+\beta=-\frac{b}{a}

\frac{2+\sqrt{10}}{2}+\frac{2-\sqrt{10}}{2}=-\frac{-4}{2}

\frac{2+\sqrt{10}+2-\sqrt{10}}{2}=2

\frac{4}{2}=2

2=2

Verified.

The product of roots \alpha\beta=\frac{c}{a}

(\frac{2+\sqrt{10}}{2})(\frac{2-\sqrt{10}}{2})=\frac{-3}{2}

\frac{2^2-\sqrt{10}^2}{4}=-\frac{3}{2

\frac{4-10}{4}=-\frac{3}{2

\frac{-6}{4}=-\frac{3}{2

-\frac{3}{2}=-\frac{3}{2

Verified.

#Learn more

In the quadratic equation ax2 + bx + c = 0, if the sum of the roots is equal to the product of the roots, find the sum of the reciprocals of the roots.

https://brainly.in/question/11200939

Similar questions