Math, asked by jesh9351, 5 months ago

Find the zeroes of the quadratic polynomial 6

2

- 3 -7x and verify the relation

between the zeroes and their coefficients.​

Answers

Answered by MagicalBeast
4

Given :

6x² - 3 - 7x

To find :

  • Zero of polynomial
  • relationship between zeros and coefficient

Formula used :

For polynomial represented by ax² + bx + c = 0

\sf \bullet \:  \: x \:  =  \dfrac{ - b \:  \pm \: \:   \sqrt{  \: {b}^{2}   \:  - 4ac} }{2a}

Solution :

Part 1- Zeros of polynomial

Rearrange given polynomial .

6x² - 7x - 3

therefore ,

a = 6

b = -7

c = -3

\sf \implies \: x \:  =  \dfrac{ - ( - 7) \:  \pm \:  \sqrt{( {7}^{2}) \:  -  \: 4(6)( - 3) } }{2 \times (6)}  \\  \\  \\ \sf \implies \: x \:  =  \frac{7 \:  \pm \:  \sqrt{ \: 49 \:  - ( - 72)} }{12}  \\  \\  \sf \implies \: x \:  =  \dfrac{7 \:  \pm \:  \sqrt{121} }{12}  \\  \\ \sf \implies \: x \:  =  \dfrac{7 \:  \pm \: 11}{12}

Therefore zeros of given polynomial are

.Either

\sf \implies \: x \:  =  \:  \dfrac{7  + 11}{12}  \\  \\ \sf \implies \: x \:  =  \dfrac{18}{12}  \\  \\ \sf \implies \: x \:  =  \dfrac{3}{2}

Or

\sf \implies \: x \:  =  \dfrac{7 - 11}{12}  \\  \\ \sf \implies \: x \:  =  \dfrac{ - 4}{12}  \\  \\ \sf \implies \: x \:  =  \dfrac{ - 1}{3}

_______________________________________________

Part 2- Verification of relationship between zeros and coefficient

(1) Sum of zeros = -b/a

LHS ,

\sf \implies \:  Sum  \: of  \: zeros  \: =  \:  \dfrac{3}{2}  + ( \dfrac{ - 1}{3  } ) \\  \\ \sf \implies \:  Sum  \: of  \: zeros  \: =  \:  \dfrac{(3 \times 3) + ( - 1 \times 2)}{3 \times 2}  \\  \\ \sf \implies \:  Sum \:  of \:  zeros \:  =  \:  \dfrac{9 - 2}{6}  \\  \\ \sf \implies  \: Sum \:  of \:  zeros  \: =  \:  \frac{7}{6}

RHS , -b/a = -(-7)/6 = (7/6)

LHS = RHS ,

hence sum of zeros = (-b/a) Verified

(2) Products of zeros = c/a

LHS ,

\sf \implies \: Products \:  of  \: zeros \:  =  \dfrac{3}{2}  \times   \dfrac{ - 1}{3}  \\  \\ \sf \implies \: Products \:  of  \: zeros \:  =  \dfrac{ - 1}{2}

RHS , c/a = (-3)/6 = (-1/2)

LHS = RHS ,

HENCE products of zeros = c/a VERIFIED

ANSWER :

1) Zeros of polynomial are , (3/2) & (-1/3)

Answered by pulakmath007
10

SOLUTION

TO DETERMINE

  • The zeroes of the quadratic polynomial

 \sf{6 {x}^{2}  - 3 - 7x}

  • To verify the relation between the zeroes and their coefficients.

EVALUATION

Here the given Quadratic polynomial is

 \sf{6 {x}^{2}  - 3 - 7x}

We are proceeding to find the zeroes of the quadratic polynomial by factorisation method

 \sf{6 {x}^{2}  - 3 - 7x}

 \sf{ = 6 {x}^{2}  - 7x - 3}

 \sf{ = 6 {x}^{2}  - (9 - 2)x - 3}

 \sf{ = 6 {x}^{2}  - 9x + 2x - 3}

 \sf{ = 3x(2x - 3)+1( 2x - 3)}

 \sf{ = (2x - 3)( 3x + 1)}

For zeroes of the quadratic polynomial we have

 \sf{6 {x}^{2}  - 3 - 7x} = 0

 \sf{  \implies \:  (2x - 3)( 3x + 1) = 0}

 \displaystyle \sf{ \implies \:  \: x =  \:  \frac{3}{2} \:  \:  , \:  -  \frac{1}{3}  }

Hence the zeroes of the quadratic polynomial are

 \displaystyle \sf{ \:  \frac{3}{2} \:  \:  , \:  -  \frac{1}{3}  }

VERIFICATION

Here the given Quadratic polynomial is

 \sf{6 {x}^{2}  - 3 - 7x}

Comparing with the quadratic polynomial

 \sf{a {x}^{2}   + bx + c} \:  \: we \: get

 \sf{a = 6 \:  ,\:b =  - 7 \:  ,\:  c =  - 3}

Sum of the zeroes

 \displaystyle \sf{  = \:  -  \frac{1}{3}  +  \frac{3}{2}}

 \displaystyle \sf{  = \:  \frac{ - 2 + 9}{6}  }

 \displaystyle \sf{  =  \frac{7}{6}   }

 \displaystyle \sf{ Again \:  \:   - \frac{b}{a}  =  - \frac{ - 7}{6}  =  \frac{ 7}{6}  }

 \displaystyle \sf{  \therefore \:  \: Sum  \: of  \: the \:  zeroes \: =   \:   - \frac{b}{a}   }

Product of the Zeroes

 \displaystyle \sf{  = \:  -  \frac{1}{3}   \times   \frac{3}{2}}

 \displaystyle \sf{  = \:  -  \frac{1}{2}  }

 \displaystyle \sf{ Again \:  \:  \frac{c}{a}  = \frac{ - 3}{6}  =  \frac{ - 1}{2}  }

 \displaystyle \sf{ Product  \: of \:  the \:  Zeroes \:  =  \:  \frac{c}{a}    }

Hence verified

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The polynomial f(x) = x⁴ - 2x³ - px² + q is divisible by (x-2)². Find the values p and q. Hence, solve the equation.

https://brainly.in/question/27895807

2. If p(x) = 2x2 + 4x + 6 is a quadratic polynomial then what is the value of sum of zeroes?

https://brainly.in/question/31024345

Similar questions