Math, asked by Yagyasharma9311, 9 months ago

Find the zeroes of the quadratic polynomial 6x^2+x-2 and verify the relationship between the zeroes and the coefficient ......please give me answer....fastly ​

Answers

Answered by ItzRadhika
56

SOLUTION:-

⠀⠀⠀⠀⠀{\boxed{\blue{\tt{Question }}}}

• Find the zeroes of the quadratic polynomial 6x^2+x-2 and verify the relationship between the zeroes and the coefficient

⠀⠀⠀⠀⠀{\boxed{\blue{\tt{Given}}}}

• p(x)= 6x²+x-2

⠀⠀⠀⠀⠀{\boxed{\blue{\tt{To\: Calculate}}}}

• Zeros of Quadratic polynomial

• And verify relationship

⠀⠀⠀⠀⠀{\boxed{\blue{\tt{Explanation }}}}

• p(x) = 6x²+x-2=0

✏ 6x²+(4-3)x-2=0

✏ 6x²+4x-3x-2=0

✏ 2x(3x+2)-1(3x+2)=0

✏ (3x+2)(2x-1)=0

✏3x+2=0,2x-1=0

✏3x=-2,2x=1

✏ x= -2/3,x=1/2

Zeros are -2/3 and 1/2

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀☆ Sum of zeros = -b/a

➨ \:  \frac{ - 2}{3}  +  \frac{1}{2}  =  \frac{ - 1}{6}  \\  \\

Take LCM

➨ \:  \frac{ - 4 + 3}{6}  =  \frac{ - 1}{6}

➨ \:  \frac{ - 1}{6}  =  \frac{ - 1}{6}

⠀⠀⠀⠀⠀☆ Product of zeros = c/a

➨ \:  \frac{ - 2}{3}  \times  \frac{1}{2}  =  \frac{ - 2}{6}

➨ \:  \frac{ - 2}{6}  =  \frac{ - 2}{ 6}

⠀⠀⠀⠀⠀{\huge{\underline{\underline{\sf{\blue{Hence\: Verified !!}}}}}}

________________________________________________

Answered by TheProphet
7

S O L U T I O N :

We have quadratic polynomial p(x) = 6x² + x - 2 & zero of the polynomial p(x) = 0 .

\underline{\underline{\tt{Using\:\:by\:\:factorization\:\:method\::}}}

\mapsto\sf{6x^{2} + x -2=0}

\mapsto\sf{6x^{2} +4x -3x  -2=0}

\mapsto\sf{2x(3x +2) -1(3x + 2) =0}

\mapsto\sf{(3x+2)(2x-1)=0}

\mapsto\sf{3x+2=0\:\:\:Or\:\:\:2x-1=0}

\mapsto\sf{3x=-2\:\:\:Or\:\:\:2x=1}

\mapsto\bf{x=-2/3\:\:\:Or\:\:\:x=1/2}

∴ α = -2/3 & β = 1/2 are the zeroes of the given polynomial .

As we know that given polynomial compared with ax² + bx + c;

  • a = 6
  • b = 1
  • c = -2

Now;

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\mapsto\tt{\alpha + \beta =\dfrac{-b}{a} =\bigg\lgroup \dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2}} \bigg\rgroup }

\mapsto\tt{\dfrac{-2}{3}  + \dfrac{1}{2}  =\dfrac{-1}{6}}

\mapsto\tt{\dfrac{-4+3}{6}   =\dfrac{-1}{6}}

\mapsto\bf{\dfrac{-1}{6}   =\dfrac{-1}{6}}

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\mapsto\tt{\alpha \times \beta =\dfrac{c}{a} =\bigg\lgroup \dfrac{Constant\:term}{Coefficient\:of\:x^{2}} \bigg\rgroup }

\mapsto\tt{\dfrac{-2}{3}  \times  \dfrac{1}{2}  =\dfrac{-2}{6}}

\mapsto\tt{\cancel{\dfrac{-2}{6}}  =\cancel{\dfrac{-2}{6}}}

\mapsto\bf{-1/3 =-1/3}

Thus;

The relationship between zeroes & coefficient are verified .

Similar questions