Math, asked by aggarwal456456, 8 months ago

find the zeroes of the quadratic polynomial 6x²-7x -3 and verify the reaction between the zeroes and the conflicts ​

Answers

Answered by Abhishek474241
3

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A polynomial
  • 6x²-7x -3

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Factors of the polynomial
  • Relationship between cofficient

{\sf{\pink{\underline{\Large{Explanation}}}}}

6x²-7x -3

  • we have to spilt the middle term in such a way that the product become -18 and sum become -7x

6x²-7x -3

=>6x²-9x+2x -3

=>3x(2x-3)+1(2x-3)

=>(2x-3) (3x+1)

=>x=3/2 , -1/3

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\rightarrow\tt\alpha{+}\beta{=}\frac{-b}{a}

&

\rightarrow\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=6

b=-7

C=-3

\rightarrow\tt\alpha{+}\beta{=}\dfrac{-(7)}{6}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{-+Cofficient\:of\:X)}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{-3}{6}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by sethrollins13
4

✯✯ QUESTION ✯✯

Find the Zeroes of the Quadratic Polynomial 6x²-7x -3 and Verify the Reaction between the Zeroes and the Conflicts ..

✰✰ ANSWER ✰✰

\implies\tt{{6x}^{2}-7x-3}

By Splitting Middle Term :

\implies\tt{\bold{{6x}^{2}-(9x-2x)-3}}

\implies\tt{{6x}^{2}-9x+2x-3}

\implies\tt{3x(2x-3)+1(2x-3)}

\implies\tt{(3x+1)(2x-3)}

  • x = -1/3
  • x = 3/2

Here : -

  • a = 6
  • b = -7
  • c = -3

━━━━━━━━━━━━━━━━━━━━

Sum Of Zeroes : -

\implies\tt{\alpha+\beta=\dfrac{-b}{a}}

\implies\tt{\dfrac{-1}{3}+\dfrac{3}{2}=\dfrac{-(-7)}{6}}

\implies\tt{\dfrac{-2+9}{6}=\dfrac{7}{6}}

\implies\tt{\dfrac{7}{6}=\dfrac{7}{6}}

\green\longmapsto\:\large\underline{\boxed{\bf\pink{L.H.S}\red{=}\blue{R.H.S}}}

Product of Zeroes : -

\implies\tt{\alpha\beta=\dfrac{c}{a}}

\implies\tt{\dfrac{-1}{3}\times\dfrac{3}{2}=\dfrac{-3}{6}}

\implies\tt{\cancel\dfrac{-3}{6}=\cancel\dfrac{-3}{6}}

\implies\tt{\dfrac{-1}{2}=\dfrac{-1}{2}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

HENCE VERIFIED

Similar questions