Math, asked by vansh78617, 10 months ago

Find the zeroes of the quadratic polynomial a
6x^2-3-7x verify the
relationship between the zeroes and its coefficients,​

Answers

Answered by Anonymous
11

\sf\red{\underline{\underline{Answer:}}}

\sf{\frac{3}{2} \ and \ \frac{-1}{3} \ are \ the \ zeroes}

\sf{of \ the \ polynomial.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{6x^{2}-3-7x}}

\sf\pink{To \ find:}

\sf{The \ zeroes \ of \ the \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{6x^{2}-3-7x}}

\sf{\implies{6x^{2}-7x-3}}

\sf{\implies{6x^{2}-9x+2x-3}}

\sf{\implies{3x(2x-3)+1(2x-3)}}

\sf{\implies{(2x-3)(3x+1)}}

\sf{\implies{x=\frac{3}{2} \ or \ \frac{-1}{3}}}

\sf\purple{\tt{\therefore{\frac{3}{2} \ and \ \frac{-1}{3} \ are \ the \ zeroes}}}

\sf\purple{\tt{of \ the \ polynomial.}}

___________________________________

\sf\blue{\underline{\underline{Verification:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{6x^{2}-3-7x}}

\sf{\implies{6x^{2}-7x-3}}

\sf{Here, \ a=6, \ b=-7 \ and \ c=3}

\sf{Let \ \frac{3}{2} \ be \ \alpha \ and \ \frac{-1}{3} \ be \ \beta}

________________________________

\sf{\alpha+\beta=\frac{3}{2}+(\frac{-1}{3})}

\sf{\therefore{\alpha+\beta=\frac{9-2}{6}}}

\sf{\therefore{\alpha+\beta=\frac{7}{6}...(1)}}

\sf{\frac{-b}{a}=\frac{-(-7)}{6}}

\sf{\therefore{\frac{-b}{a}=\frac{7}{6}...(2)}}

\sf{...from \ (1) \ and \ (2)}

\sf{\alpha+\beta=\frac{-b}{a}}

\sf{\therefore{Sum \ of \ zeroes=\frac{-b}{a}}}

\sf{\alpha\beta=\frac{3}{2}\times(\frac{-1}{3})}

\sf{\therefore{\alpha\beta=\frac{-3}{6}...(3)}}

\sf{\frac{c}{a}=\frac{-3}{a}...(4)}

\sf{...from \ (3) \ and \ (4)}

\sf{\alpha\beta=\frac{c}{a}}

\sf{\therefore{Product \ of \ zeroes=\frac{c}{a}}}

\sf{Hence, \ verified.}

Answered by TheSentinel
29

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{Find \ the \ zeroes \ of \ the \ quadratic \   polynomial}

\rm{6x^2-3-7x \  verify \  the \ relationship \  between}

\rm{the \  zeroes \  and \  its \ coefficients}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\blue{\underline{\red{\frac{3}{2} \ and \ \frac{-1}{3} \ are \ the \ zeroes}}}}

\rm{\blue{\underline{\red{of \ the \ polynomial.}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \ given \ quadratic \ polynomial \ is}

\rm{\longrightarrow{6x^{2}-3-7x}}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{The \ zeroes \ of \ the \ polynomial.}

_________________________________________

\purple{\underline{\underline{\blue{\boxed{\boxed{\red{\star{\sf Answer:}}}}}}}} \\ \\

\rm{The \ given \ quadratic \ polynomial \ is} \\ \\

\rm{\longrightarrow{6x^{2}-3-7x}} \\ \\

\rm{\longrightarrow{6x^{2}-7x-3}} \\ \\

\rm{\longrightarrow{6x^{2}-9x+2x-3}} \\ \\

\rm{\lingrightarrow{3x(2x-3)+1(2x-3)}} \\ \\

\rm{\longrightarrow{(2x-3)(3x+1)}} \\ \\

\rm{\longrightarrow{x=\frac{3}{2} \ or \ \frac{-1}{3}}} \\ \\

\rm{\blue{\underline{\red{\frac{3}{2} \ and \ \frac{-1}{3} \ are \ the \ zeroes}}}}

\rm{\blue{\underline{\red{of \ the \ polynomial.}}}}

__________________________________________

\pink{\underline{\underline{\green{\boxed{\boxed{\purple{\star{\sf Verification \ of \ the \ Answer:}}}}}}}} \\ \\

\sf{The \ given \ quadratic \ polynomial \ is} \\ \\

\rm{\longrightarrow{6x^{2}-3-7x}} \\ \\

\rm{\longrightarrow{6x^{2}-7x-3}} \\ \\

\rm{Here, \ a=6, \ b=-7 \ and \ c=3} \\ \\

\rm{Let \ \frac{3}{2} \ be \ \alpha \ and \ \frac{-1}{3} \ be \ \beta}

________________________________

\rm{\alpha+\beta=\frac{3}{2}+(\frac{-1}{3})} \\ \\

\rm{\implies{\alpha+\beta=\frac{9-2}{6}}} \\ \\

\rm{\implies{\alpha+\beta=\frac{7}{6}......(a)}} \\ \\

\rm{\frac{-b}{a}=\frac{-(-7)}{6}} \\ \\

\rm{\implies{\frac{-b}{a}=\frac{7}{6}...(b)}}

\rm{...from \ (a) \ and \ (b)}

\rm{\alpha+\beta=\frac{-b}{a}}

\rm{\implies{Sum \ of \ zeroes=\frac{-b}{a}}}

\rm{\alpha\beta=\frac{3}{2}\times(\frac{-1}{3})}

\rm{\implies{\alpha\beta=\frac{-3}{6}.....(c)}}

\rm{\frac{c}{a}=\frac{-3}{a}......(d)}

\rm{...from \ (c) \ and \ (d)}

\rm{\alpha\beta=\frac{c}{a}}

\rm{\therefore{Product \ of \ zeroes=\frac{c}{a}}}

\rm\orange{Hence, \ Answer \ is \ verified}

___________________________________________

\rm\blue{Hope \ it \ helps \ :))}

Similar questions