Math, asked by cheers, 1 year ago

Find the zeroes of the quadratic polynomial abx2+(b2-ac)x-bc, and verify the relationship between zeroes and its coefficients.

Answers

Answered by Anonymous
47
hope this helps you ☺☺
Attachments:
Answered by mysticd
33

 Let \: p(x) = abx^{2} + (b^{2}-ac)x - bc

/* By splitting the middle term we see */

 p(x) = abx^{2} + b^{2} x -acx - bc\\= bx( ax + b) -c(ax + b) \\= (ax + b)( bx - c)

 p(x) = abx^{2} + (b^{2}-ac)x - bc \:is \:zero \\when\: either  \: ax + b = 0 \: Or \: bx - c = 0

 i.e., when \: x = \frac{-b}{a } \: Or \: x = \frac{c}{b}

 The \: zeroes \: of \:  abx^{2} + (b^{2}-ac)x - bc \\are \: \frac{-b}{a } \:and \:  \frac{c}{b}

 We \:can \: see \: that \: the :

 Sum \:of \:the \: zeroes \\= \frac{-b}{a } + \frac{c}{b}\\= \frac{-b^{2} + ac}{ab} \\= \frac{-(b^{2} -ac)}{ab} \\= \frac{ - ( Coefficient \:of \: x )}{ Coefficient \:of \:x^{2}}

 Product\:of \:the \: zeroes \\= \frac{-b}{a } \times  \frac{c}{b}\\= \frac{-c}{a} \\= \frac{ Constant \:term}{ Coefficient \:of \:x^{2}}

•••♪

Similar questions