Math, asked by michaelgimmy, 1 day ago

Find the zeroes of the Quadratic Polynomial and then, verify the relationship between the zeroes and the coefficients.
\mathtt{6x^2-3-7x}

Answers

Answered by krishpmlak
3

Answer:

Step-by-step explanation:

Attachments:
Answered by anindyaadhikari13
10

\textsf{\large{\underline{Solution}:}}

Given Polynomial:

\rm\longrightarrow f(x)=6x^{2}-7x-3

\rm\longrightarrow 6x^{2}-7x-3=0

\rm\longrightarrow 6x^{2}-9x+2x-3=0

\rm\longrightarrow 3x(2x-3)+1(2x-3)=0

\rm\longrightarrow (3x+1)(2x-3)=0

Therefore:

\rm\longrightarrow x=\dfrac{-1}{3},\dfrac{3}{2}

Verification:

Comparing f(x) with ax² + bx + c, we get:

\rm\longrightarrow\begin{cases}\rm a=6\\ \rm b=-7\\ \rm c=-3\end{cases}

We know that:

\rm\longrightarrow Sum\ Of\ Roots=\dfrac{-b}{a}

\rm\longrightarrow Sum\ Of\ Roots=\dfrac{-(-7)}{6}

\rm\longrightarrow Sum\ Of\ Roots=\dfrac{7}{6}

Also:

\rm\longrightarrow Sum\ Of\ Roots=\dfrac{-1}{3}+\dfrac{3}{2}

\rm\longrightarrow Sum\ Of\ Roots=\dfrac{-2+9}{6}

\rm\longrightarrow Sum\ Of\ Roots=\dfrac{7}{6}

Again:

\rm\longrightarrow Product\ Of\ Roots=\dfrac{c}{a}

\rm\longrightarrow Product\ Of\ Roots=\dfrac{-3}{6}

\rm\longrightarrow Product\ Of\ Roots=\dfrac{-1}{2}

Also:

\rm\longrightarrow Product\ Of\ Roots=\dfrac{-1}{3}\times\dfrac{3}{2}

\rm\longrightarrow Product\ Of\ Roots=\dfrac{-1}{2}

Hence Verified..!!

\textsf{\large{\underline{Learn More}:}}

1. Relationship between zeros and coefficients (Quadratic Polynomial)

Let f(x) = ax² + bx + c and let α and β be the zeros of f(x).

Therefore:

\rm\longrightarrow\alpha+\beta=\dfrac{-b}{a}

\rm\longrightarrow\alpha\beta=\dfrac{c}{a}

2. Relationship between zeros and coefficients (Cubic Polynomial)

Let f(x) = ax³ + bx² + cx + d and let α, β and γ be the zeros of f(x).

Therefore:

\rm\longrightarrow \alpha+\beta+\gamma=\dfrac{-b}{a}

\rm\longrightarrow \alpha\beta+\beta\gamma+\alpha\gamma=\dfrac{c}{a}

\rm\longrightarrow \alpha\beta\gamma=\dfrac{-d}{a}


anindyaadhikari13: Thanks for the brainliest :)
Similar questions