Math, asked by 1622AL, 10 months ago

Find the zeroes of the quadratic polynomial and verify the relationship between the zeroes and the coefficients(i) x2 + 4x -5 (ii) 2x2 -8x +6

Answers

Answered by amitkumar44481
90

SolutioN :

Let,

  • Both Zeros of polynomial be α and β.

( i ) x² + 4x - 5.

Compare with General Equation.

 \tt \dagger \:  \:  \:  \:  \:  \fbox{x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

Where as,

  • a = 1.
  • b = 4.
  • c = - 5.

Let Find Zeros.

 \tt :  \implies x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \tt :  \implies x =  \dfrac{ - 4 \pm \sqrt{ {4}^{2} - 4 \times 1 \times  - 5} }{2}

 \tt :  \implies x =  \dfrac{ - 4 \pm \sqrt{ 16  + 20} }{2}

 \tt :  \implies x =  \dfrac{ - 4 \pm \sqrt{ 36} }{2}

 \tt :  \implies x =  \dfrac{ - 4 \pm  6 }{2}

Either,

 \tt :  \implies x =  \dfrac{ - 4  +  6}{2}

 \tt :  \implies x =  \dfrac{ 2}{2}

 \tt :  \implies x =  1.

Or,

 \tt :  \implies x =  \dfrac{ - 4   -   6}{2}

 \tt :  \implies x =  -  5.

\rule{120}3

Let Verify Zeros and Coefficient.

  • α = 1.
  • β = - 5.

Now,

Sum of Zeros.

➟ α + β = - b / a.

➟ 1 - 5 = - 4.

\rule{90}1

Product of Zeros.

➟ α * β = c / a.

➟ 1 * - 5 = - 5.

➟ - 5 = - 5.

Hence Verify.

Note : part ( ii ) provide above.

Attachments:
Similar questions