Math, asked by chitragchitra2175, 1 year ago

Find the zeroes of the quadratic polynomial and verify the relationship between the zeros and the coefficient 
= tsquare-8

Answers

Answered by tejasgupta
69

Answer:

2√2 and -2√2

Step-by-step explanation:

Given polynomial:

t^2 - 8\\\\= t^2 - \sqrt{8}^2\\\\= t^2 - (2\sqrt{2})^2\\\\= (t+2\sqrt{2})(t - 2\sqrt{2})\\

Thus, the zeroes of the polynomial are 2√2 and -2√2.

Verifying the relationship:-

  1. Sum of zeroes = 2√2 - 2√2 = 0; -b/a = -(0)/1 = 0
  2. Product of zeroes = 2√2*-2√2 = -8; c/a = -8

Hence, verified.


SillySam: Nice answer tej :)
aryan7523: nice
tejasgupta: Thanks!
Answered by shadowsabers03
74

\textsf{We have,} \\ \\ \\ \begin{aligned}&t^2-8\\ \\ \Longrightarrow\ \ &t^2+t\sqrt{8}-t\sqrt{8}-8\\ \\ \Longrightarrow\ \ &t(t+\sqrt{8})-\sqrt{8}(t+\sqrft{8})\\ \\ \Longrightarrow\ \ &(t+\sqrt{8})(t-\sqrt{8})\end{aligned}

\textsf{So the value of \ $t^2-8$ \ is \ $0$ \ when \ $t+\sqrt{8}=0$ \ or \ $t-\sqrt{8}=0$.} \\ \\ \\ \therefore\ t=\sqrt{8}\ \ \ ; \ \ \ t=-\sqrt{8}\\ \\ \\ \alpha=\sqrt{8}\ \ \ ; \ \ \ \beta=-\sqrt{8}

p(t)=t^2-8=0 \\ \\ \\ a=1\ \ \ ; \ \ \ b=0\ \ \ ; \ \ \ c=-8

\displaystyle \textsf{Sum of the zeroes:}\\ \\ \\ \alpha+\beta=\sqrt{8}+(-\sqrt{8})=\sqrt{8}-\sqrt{8}=0 \\ \\ \\ -\frac{b}{a}=-\frac{0}{1}=0 \\ \\ \\ \therefore\ \alpha+\beta=-\frac{b}{a}

\displaystyle \textsf{Product of the zeroes:}\\ \\ \\ \alpha\beta=\sqrt{8} \times (-\sqrt{8}) = -8 \\ \\ \\ \frac{c}{a}=\frac{-8}{1}=-8\\ \\ \\ \therefore\ \alpha\beta=\frac{c}{a}

\huge \textsc{\underline{\underline{Hence Verified!!!}}}


abhay1833: t2−8=t2−8​2=t2−(22​)2=(t+22​)(t−22​)​

Thus, the zeroes of the polynomial are 2√2 and -2√2.

Verifying the relationship:-

Sum of zeroes = 2√2 - 2√2 = 0; -b/a = -(0)/1 = 0

Product of zeroes = 2√2*-2√2 = -8; c/a = -8

Hence, verified.
Similar questions