Math, asked by anandshivam2004, 10 months ago

Find the zeroes of the quadratic polynomial x^{2} -3x-10 and verify the relationship between the zeroes and coefficient.

Answers

Answered by Anonymous
9

\huge{\bf{\underline{\overline{\mathfrak{\red{Solution:-}\mid}}}}}

 \tt{x}^{2}  - 3x - 10

 \tt = {x}^{2}  - (5 - 2) x - 10

\tt  = {x}^{2}  - 5x + 2x - 10

\tt = x(x - 5) + 2(x  - 5)

 \tt= (x + 2)( x - 5)

Either,

x + 2 = 0 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  \: x - 5 = 0 \\ x  =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: x = 5

So, the reqd. zeros are :- 5 and -2

_____________________________________________

Again,

  • coefficient of x = -3
  • coefficient of \bf{x}^{2} = 1
  • constant term = -10

Now,

\boxed{Sum\:of\:zeros}

\tt = 5 + ( - 2)

 \tt= 5 - 2

 \tt= 3

 \tt = \frac{ - ( - 3)}{ 1}

\bf\tt =\frac{ -  \: coefficient \: of \: x}{coefficient \: o f\: {x}^{2}  }

And,

\boxed{Product\:of\:zeros}

\tt = 5 \times ( - 2)

 \tt=  - 10

 \tt=  \frac{ -10 }{1}

\bf\tt=  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }

Answered by dksalunkhe
0

Step-by-step explanation:

# hope this helps you to use

Please follow me

Please say thanks to me in comment box

Attachments:
Similar questions