Math, asked by hinalmparmar, 4 months ago

find the zeroes of the quadratic polynomial x2-15x+50 and verify the relationship between the zeroes and the coefficients of the polynomial

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{Polynomial is}\;\mathsf{x^2-15x+50}

\textbf{To find:}

\textsf{Zeroes of the given polynomial}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{x^2-15x+50}

\mathsf{=x^2-10x-5x+50}

\mathsf{=x(x-10)-5(x-10)}

\mathsf{=(x-5)(x-10)}

\mathsf{x^2-15x+50=0}

\implies\mathsf{(x-5)(x-10)=0}

\implies\mathsf{x=5,10}

\therefore\mathsf{Zeroes\;are\;5,\;10}

\mathsf{Now,}

\mathsf{Sum\;of\;the\;zeroes=5+10=15}

\mathsf{Product\;of\;the\;zeroes=5{\times}10=50}

\underline{\mathsf{Verification:}}

\mathsf{Sum\;of\;the\;zeroes=\dfrac{-b}{a}=\dfrac{-(-15)}{1}=15}

\mathsf{Product\;of\;the\;zeroes=\dfrac{c}{a}=\dfrac{50}{1}=50}

\mathsf{Hence\;verified}

\textbf{Find more:}

Answered by DADA7769
5

HOPE U LIKE

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

GIVE ❤️ TO ME

Attachments:
Similar questions