Math, asked by dhairyachavda2005178, 7 months ago

find the zeroes of the quadratic polynomial X2+7x-30 & varify the relationship between the zeroes & the coefficients
(please give me correct answer and fast I need help please)​

Answers

Answered by TheProphet
6

S O L U T I O N :

We have quadratic equation or polynomial p(x) = x² + 7x - 30 & zero of the polynomial p(x) = 0.

\underline{\underline{\tt{By\:quadratic\:formula\::}}}

\boxed{\bf{x = \frac{-b\pm \sqrt{b^{2} - 4ac} }{2a}}}

As we know that given equation compared with ax² + bx + c;

  • a = 1
  • b = 7
  • c = -30

Now,

\mapsto\tt{x = \dfrac{-b\pm\sqrt{b^{2} - 4ac} }{2a} }

\mapsto\tt{x = \dfrac{-7\pm\sqrt{(7)^{2} - 4\times 1 \times (-30)} }{2\times 1} }

\mapsto\tt{x = \dfrac{-7\pm\sqrt{49 +120} }{2} }

\mapsto\tt{x = \dfrac{-7\pm\sqrt{169} }{2} }

\mapsto\tt{x = \dfrac{-7\pm 13 }{2} }

\mapsto\tt{x = \dfrac{-7 + 13}{2} \:\:\:Or\:\:\: x = \dfrac{-7-13}{2} }

\mapsto\tt{x = \dfrac{6}{2} \:\:\:Or\:\:\: x = \dfrac{-20}{2} }

\mapsto\tt{x = \cancel{\dfrac{6}{2}} \:\:\:Or\:\:\: x = \cancel{\dfrac{-20}{2}} }

\mapsto\bf{x = 3\:\:Or\:\:x = -10}

∴ α = 10 & β = -3 are two zeroes of the given polynomial .

V E R I F I C A T I O N :

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\mapsto\tt{\alpha + \beta  = \dfrac{-b}{a}  =\bigg\lgroup  \dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2}} \bigg\rgroup }

\mapsto\tt{3+ (-10)  = \dfrac{-7}{1}}

\mapsto\tt{3-10  = -7}

\mapsto\bf{-7  = -7}

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\mapsto\tt{\alpha \times  \beta  = \dfrac{c}{a}  =\bigg\lgroup  \dfrac{Constant\:term}{Coefficient\:of\:x^{2}} \bigg\rgroup }

\mapsto\tt{3\times  (-10)  = \dfrac{-30}{1}}

\mapsto\bf{-30 = -30}

Thus,

The relationship between zeroes & coefficient are verified .

Answered by Anonymous
0

Answer:

Khadar:Renewal of soil every year

Step-by-step explanation:

here ur answer

Similar questions