Math, asked by alokgupta4334, 9 months ago

find the zeroes of the quadratic polynomial2x^2-3√3x-6 and verify the relationship between the zeroes and the coefficient.​

Answers

Answered by sonabhupi90409
0

Answer:

this is hard you follow me I follow you

Answered by Anonymous
1

\bold\red{\underline{\underline{Answer:}}}

\bold{Zeroes \ are \ 2\sqrt3 \ and \frac{\sqrt-3}{2}}

\bold\green{\underline{\underline{Solution}}}

\bold{2x^{2}-3\sqrt3x-6}

\bold{2x^{2}-4\sqrt3x+\sqrt3x-6}

\bold{2x(x-2\sqrt3)+\sqrt3(x-2\sqrt3)}

\bold{(x-2\sqrt3)(2x+\sqrt3)}

\bold{x=2\sqrt3 \ or \frac{-\sqrt3}{2}}

\bold\purple{Verification}

\bold{2x^{2}-3\sqrt3x-6}

Here, a=2, b=\bold{-3\sqrt3} and c=6

We know, sum of zeroes=\bold{\frac{-b}{a}}

\bold{2\sqrt3+(\frac{\sqrt-3}{2})}

=\bold{\frac{\sqrt3}{2}...1}

\bold{\frac{-b}{a}}=\bold{\frac{\sqrt3}{2}...2}

from 1 and 2

Sum of zeroes=\bold{\frac{-b}{a}}

______________________________________

Also,

\bold{2\sqrt3×(\frac{\sqrt-3}{2})}

=\bold{6...1}

\bold{\frac{c}{a}}=\bold{6...2}

from 1 and 2

Product of zeroes=\bold{\frac{c}{a}}

Similar questions