Math, asked by rajritu75505, 11 months ago

find the zeroes of the quadratic polynomials and verify the relationship between the zeroes and the coefficients:​

Attachments:

Answers

Answered by MrCombat
14

Answer:

5 {y}^{2}  + 10y \:  = 0 \\ 5y(y + 2) = 0 \\ y = 0 \: or \:y =  - 2

Answered by VishnuPriya2801
10

Answer:-

5y² + 10y = 0

5y (y + 2) = 0

y + 2 = 0/5y

y + 2 = 0

y = (-2).

Relationship between zeroes and coefficient of a quadratic equation:-

Let the quadratic equation be ax² + bx + c = 0 where a,b,c belonging real numbers and a ≠ 0.

its \: roots \: are \:  \alpha  \: and \:  \beta  \: where \:  \alpha  =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  \: and \:  \\  \\  \beta  \:  =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ sum \: of \: roots \: (zeroes) \:  =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  +  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac}  - b -  \sqrt{ {b}^{2} - 4ac }  }{2a } \\  \\  =  \:  \frac{ - 2b}{2a}   \\  \\  \alpha  +  \beta  =  -  \frac{b}{a}  \\  \\ product \: of \: the \: roots \:   =  \alpha  \beta  \\  \\  = \: { \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a} } \times { \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a} }\\  \\   =  \frac{ {( - b)}^{2}  - ( \sqrt{ {b}^{2} - 4ac })^{2}  }{ {(2a)}^{2} }  \\  \\  =  \frac{4ac}{4 {a}^{2} }  \\  \\   \alpha  \beta =  \frac{c}{a} .

Thus , the sum and product of roots show the relationship between zeroes and coefficients.

Similar questions