Find the zeroes of the quadratic polynomialx2+ 7x + 12, and verify the relationship between the zeroes and coefficient
Answers
Given :
- A polynomial x²+7x+12.
To Find :
- Zeroes of the given polynomial and verify the relationship between zeroes and coefficient.
Solution :
By Splitting Middle Term :
- x = -3
- x = -4
So , -3 and -4 are the zeroes of polynomial x²+7x+12..
_______________________
Here :
- a = 1
- b = 7
- c = 12
Sum of Zeroes :
Product of Zeroes :
HENCE VERIFIED
Given :
A polynomial x²+7x+12.
To Find :
Zeroes of the given polynomial and verify the relationship between zeroes and coefficient.
Solution :
\longmapsto\tt\bf{{x}^{2}+7x+12}⟼x
2
+7x+12
By Splitting Middle Term :
\longmapsto\tt{{x}^{2}+(4x+3x)+12}⟼x
2
+(4x+3x)+12
\longmapsto\tt{{x}^{2}+4x+3x+12}⟼x
2
+4x+3x+12
\longmapsto\tt{x(x+4)+3(x+4)}⟼x(x+4)+3(x+4)
\longmapsto\tt{(x+3)(x+4)}⟼(x+3)(x+4)
x = -3
x = -4
So , -3 and -4 are the zeroes of polynomial x²+7x+12..
_______________________
Here :
a = 1
b = 7
c = 12
Sum of Zeroes :
\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}⟼α+β=
a
−b
\longmapsto\tt{-3+(-4)=\dfrac{-7}{1}}⟼−3+(−4)=
1
−7
\longmapsto\tt{-3-4=7}⟼−3−4=7
\longmapsto\tt\bf{7=7}⟼7=7
Product of Zeroes :
\longmapsto\tt{\alpha\beta=\dfrac{c}{a}}⟼αβ=
a
c
\longmapsto\tt{-3\times{-4}=\dfrac{12}{1}}⟼−3×−4=
1
12
\longmapsto\tt\bf{12=12}⟼12=12
HENCE VERIFIED