Math, asked by boyb87532, 1 month ago

find the zeroes of the quadrature polynomial x^2 - 2√2 x and verify the relationship between the zeroes and the coefferents.​

Answers

Answered by VεnusVεronίcα
7

\large \underline{\pmb{\mathfrak{Question...}}}

Find the zeroes of the quadratic polynomial \sf x^2-2\sqrt{2}x and verify the relationship between the zeroes and coefficients.

 \\

\large \underline{\pmb{\mathfrak{Solution...}}}

Finding the factors of the polynomial :

 \:  \:  \:  \sf \implies x ^{2}  - 2 \sqrt{2} x = 0 \\  \\  \:  \:  \:  \sf \implies x(x - 2 \sqrt{2} ) = 0 \\  \\  \:  \:  \: {     \implies \pmb{ \sf{ x = 0 \: and \: 2 \sqrt{2} }}}

Finding sum of the zeroes :

 \:  \:  \:  \sf \implies Sum_{(zeroes)} = 0 + 2 \sqrt{2}  \\  \\  \:  \:  \:   \implies \pmb{\sf {Sum _{(zeroes)} = 2 \sqrt{2}  } }

Finding the product of the zeroes :

 \:  \:  \:  \sf \implies Product_{(zeroes)} = 0(2 \sqrt{2} ) \\  \\  \:  \:  \:   \implies\pmb{ \sf{ Product_{(zeroes)} = 0 }}

When we compare \sf x^2-2\sqrt{2}x to \sf ax^2+bx+c, we get :

  • \sf a = 1
  • \sf b = -2\sqrt{2}
  • \sf c = 0

Verifying the relationship between the zeroes and coefficients :

 \:  \:  \: \pmb{ \sf{ \alpha  +  \beta  =  \dfrac{ - b}{a}}}  \\  \\  \:  \:  \:  \sf \implies2 \sqrt{2}  =   \frac{- ( - 2 \sqrt{2} )}{1} \\  \\  \:  \:  \:  \sf \implies2 \sqrt{2}  =  2 \sqrt{2}  \\  \\  \:  \: \:   {\pmb{\sf  {Verified!}}}\\ \\ ~ \:  \:  \pmb{\sf{ \alpha  \beta  =  \dfrac{c}{a}}}  \\  \\  \:  \:  \: \sf \implies0 =  \dfrac{0}{1}  \\  \\  \:  \:  \:  \sf \implies0 = 0 \\  \\  \:  \:  \:  \pmb{\sf{ Verified!}}

Similar questions