find the zeroes of x^3+11x^2+23x-35 if one of its zeroes is-7
Answers
Step-by-step explanation:
Method 1 :-
Factorise -
x³ + 11x² + 23x - 35
= x³ + 7x² + 4x² + 28x - 5x - 35
= x²(x + 7) + 4x(x + 7) - 5(x + 7)
= (x + 7)(x² + 4x - 5)
= (x + 7)(x² - x + 5x - 5)
= (x + 7)[x(x - 1) + 5(x - 1)]
= (x + 7)(x + 5)(x - 1)
Zeroes are -
x + 7 = 0 , x + 5 = 0 , x - 1 = 0
- x = - 7, - 5, 1
Method 2 :-
Divide -
If - 7 is zero of polynomial x³ + 11x² + 23x - 35, then (x + 7) is the factor.
x + 7)x³ + 11x² + 23x - 35(x² + 4x - 5
x³ + 7x²
(-) (-)
____________________
4x² + 23x - 35
4x² + 28x
(-) (-)
____________________
-5x - 35
-5x - 35
(+) (+)
____________________
X X
Now,
Factorising x² + 4x - 5
x² + 4x - 5
= x² - x + 5x - 5
= x(x - 1) + 5(x - 1)
= (x + 5)(x - 1)
Zeroes are -
x + 5 = 0 and x - 1 = 0
- x = - 5 and x = 1
Zeros of this equation.
__________________________
Factorize the equation →
So the zeros are -
So the zeros are -7 , -5 , 1 .
__________________________