Math, asked by lsara7756, 1 month ago


Find the zeroos of following quadratic polynomials
and verify the relationship between the zeroes
and Co officients
x^2-6x+9

Answers

Answered by Sauron
121

Step-by-step explanation:

Given:

Polynomial = x² - 6x + 9

To find:

Verifying the relationship between zeros of polynomial and it's co-officients.

Solution:

Find zeros of x² - 6x + 9

\sf{\longrightarrow{{x}^{2}  - 6x + 9}}

\sf{\longrightarrow{ {x}^{2}  - 3x - 3x + 9}}

\sf{\longrightarrow{x(x - 3) - 3(x - 3)}}

\sf{\longrightarrow{(x - 3)(x - 3) = 0}}

\sf{\longrightarrow} \:  x = 3 \:  and \:  x = 3

The zeros are 3 and 3

_____________________

Verifying the relationship:

For polynomial x² - 6x + 9, if zeros are α and β

In the polynomial -

  • a = 1
  • b = -6
  • c = 9

Sum of zeros :

\sf{\longrightarrow} \:  \alpha  +  \beta  =  \dfrac{ - b}{a}

\sf{\longrightarrow} \:  \alpha  +  \beta  =  \dfrac{ - ( - 6)}{1}

\sf{\longrightarrow} \:  \alpha  +  \beta  =  6

Sum of the zeros is 6.

_____________________

Product of zeros :

\sf{\longrightarrow} \:  \alpha  \times   \beta  =  \dfrac{c}{a}

\sf{\longrightarrow} \:  \alpha  \times   \beta  =  \dfrac{9}{1}

\sf{\longrightarrow} \:  \alpha  \times   \beta  =  9

Product of zeros = 9

Hence verified!

Answered by Anonymous
162

Answer:

Given :-

 \mapsto \sf {x}^{2} - 6x + 9

To Find :-

  • What is the zeros and verify the relationship between the zeros and it's co-efficient.

Solution :-

Given equation :

{\large{\bold{\purple{\underline{\rightarrow\: {x}^{2} - 6x + 9}}}}}

 \implies \sf {x}^{2} - 6x + 9 =\: 0

 \implies \sf {x}^{2} - (3 + 3)x + 9 =\: 0

 \implies \sf {x}^{2} - 3x - 3x + 9=\: 0

 \implies \sf x(x - 3) - 3(x - 3) =\: 0

 \implies \sf (x - 3)(x - 3) =\: 0

 \implies \sf (x - 3) =\: 0

 \implies \sf\bold{\red{x =\: 3}}

And,

 \implies \sf (x - 3) =\: 0

 \implies \sf\bold{\red{x =\: 3}}

\sf \therefore The\: two\: roots\: is\: \alpha =\: 3\: and\: \beta =\: 3.

\rule{300}{2}

\diamondsuit \: \boxed{\sf{VERIFY\: THE\: RELATIONSHIP\: BETWEEN\: ZEROS\: AND\: CO-EFFICIENT\: :-}}

Let, the two roots of the polynomial be α and β

\longmapsto Sum of roots :

\clubsuit \: \sf\boxed{\bold{\pink{Sum\: of\: roots =\: \dfrac{- b}{a}}}}\\

Given :

  • α = 3
  • β = 3

\leadsto \sf\bold{\blue{{x}^{2} - 6x + 9}}

where,

  • a = 1
  • b = - 6
  • c = 9

So,

 \implies \sf \alpha + \beta =\: \dfrac{- b}{a}

 \implies \sf 3 + 3 =\: \dfrac{- (- 6)}{1}

 \implies \sf 6 =\: \dfrac{6}{1}

 \implies \sf\bold{\purple{6 =\: 6}}

Again,

\longmapsto Product of roots :

\clubsuit \: \sf\boxed{\bold{\pink{Product\: of\: roots =\: \dfrac{c}{a}}}}\\

Given :

  • α = 3
  • β = 3

\leadsto \sf\bold{\blue{ {x}^{2} - 6x + 9}}

where,

  • a = 1
  • b = - 6
  • c = 9

So,

 \implies \sf \alpha\beta =\: \dfrac{c}{a}

 \implies \sf 3 \times 3 =\: \dfrac{9}{1}

 \implies \sf\bold{\purple{9 =\: 9}}

\longmapsto HENCE, VERIFIED .

Similar questions