Math, asked by meena88844, 1 month ago

Find the zeros of 2√3x2 – 5x + √3 and verify the relationship between the zeros
and the coefficients.​

Answers

Answered by arshan0786ansari
6

Step-by-step explanation:

2 { \sqrt{3}x }^{2}  - 5x +  \sqrt{3 } = 0

2 { \sqrt{3}x }^{2}  -(3 + 2)x +  \sqrt{3 }  = 0

2 \sqrt{ 3{x}^{2} }  - 3x - 2x +  \sqrt{3 }  = 0

 { \sqrt{3}x }(2x -  \sqrt{3} ) - 1(2x -  \sqrt{3} ) = 0

(2x -  \sqrt{3} ) \: ( \sqrt{3} x - 1)

IF

2x -  \sqrt{3}  = 0

x =   \frac{ \sqrt{3} }{ \: 2}

OR

 \sqrt{3} x - 1 = 0

x =  \frac{ \: 1}{ \sqrt{3} }

Let,

 \alpha  =  \frac{ \sqrt{3} }{2}

And

 \beta  =  \frac{1}{ \sqrt{3} }

So find relationship between we get.

 \alpha  +  \beta  =  \frac{ - b}{a}

 \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{3 } }  =  \frac{5}{2 \sqrt{3} }

 \frac{3 + 2} {2 \sqrt{3} }  =  \frac{5}{2 \sqrt{3} }

 \frac{5}{2 \sqrt{3} }  =  \frac{5}{2 \sqrt{3} }

And

 \alpha  \beta  =  \frac{c}{a}

 \frac{ \sqrt{3} }{2}  \times  \frac{1}{ \sqrt{3} }  =  \frac{ \sqrt{3} }{ 2\sqrt{3} }

  \frac{1}{2}  =  \frac{1}{2}

I hope it's help

Please Mark brilliant.

Similar questions