Math, asked by harjeetkaur20219, 10 months ago

find the zeros of 64x²+16x+1 and verify the relationship between the zeros and it's cofficient​

Answers

Answered by Anonymous
4

Answer:

64x {}^{2}  + 16x + 1 = 0 \\ 64x {}^{2}  + 8x + 8x + 1 = 0 \\ 8x(8x + 1) + 1(8x + 1) = 0 \\ (8x + 1)(8x + 1) = 0 \\   \\ a = 64 \:  \:  \:  \: b = 16 \:  \:  \:  \:  \: c = 1 \\ \\ x =  -  \frac{1}{8}  =  \alpha  \\  \\ x =   - \frac{1}{8}   =  \beta \\  \\ sum \: of \: zeroes \:  \\  \alpha  +  \beta  =  -  \frac{b}{a}  \\   \\ -   \frac{1}{8}  -  \frac{1}{8} =  -  \frac{16}{64}  \\  \\    -   \frac{1}{4}  =  -  \frac{1}{4}  \\  \\ product \: of \: zeroes \\  \alpha  \beta  =  \frac{c}{a}  \\  \\  -  \frac{1}{8}  \times  -  \frac{1}{8}  =  \frac{1}{64}  \\ \\   \frac{1}{64}  =  \frac{1}{64}

Step-by-step explanation:

Hope it helps you...........

please mark it as brainliest..........

Answered by Anonymous
57

Answer:

⋆ Given Polynomial : 64x² + 16x + 1

Here : a = 64,⠀b = 16,⠀c = 1

:\implies\tt f(x) = 0\\\\\\:\implies\tt 64x^2 +16x +1= 0\\\\\\:\implies\tt (8x)^2 +(2 \times 8x \times 1) +(1)^2= 0\\\\{\scriptsize\qquad\bf{\dag}\:\:\sf{(a)^2+2ab+(b)^2=(a+b)^2}}\\\\:\implies\tt (8x+1)^2 = 0\\\\\\:\implies\tt 8x+1=0\\\\\\:\implies\underline{\boxed{\tt x =\dfrac{-\:1}{8}}}

\rule{150}{1}

\underline{\bigstar\:\:\textsf{Relation b/w zeroes and coefficient :}}

\qquad\underline{\bf{\dag}\:\:\textsf{Sum of Zeroes :}}\\\dashrightarrow\tt\:\: \alpha+\beta = \dfrac{-\:b}{a}\\\\\\\dashrightarrow\tt\:\: \dfrac{ -1}{8} + \dfrac{ -1}{8}  = \dfrac{ -16}{64}\\\\\\\dashrightarrow\tt\:\: \dfrac{ - 2}{8} = \dfrac{ - 1}{4} \\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt \dfrac{ - \:1}{4} = \dfrac{ -\:1}{4}  }}}\\\\\\{\qquad\underline{\bf{\dag}\:\:\textsf{Product of Zeroes :}}}\\\\\dashrightarrow\tt\:\: \alpha \times \beta = \dfrac{c}{a}\\\\\\\dashrightarrow\tt\:\: \dfrac{ - 1}{8} \times \dfrac{ - 1}{8} = \dfrac{1}{64}\\\\\\\dashrightarrow\:\:\underline{\boxed{ \red{\tt  \dfrac{1}{64}  = \dfrac{1}{64} }}}

Similar questions